\(\dfrac{x-2}{5}=\dfrac{4}{6}\)
⇔\(6\left(x-2\right)=4.5\)
⇔\(6x-12=20\)
⇔\(x=\dfrac{4}{3}\)
\(a,\Leftrightarrow6x-12=20\Leftrightarrow x=\dfrac{16}{3}\\ b,\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{x-y+z}{3-4+5}=\dfrac{8}{4}=2\\ \Leftrightarrow\left\{{}\begin{matrix}x=6\\y=8\\z=10\end{matrix}\right.\\ c,\Leftrightarrow\left(x-2\right)^2=36\left(x\ne2\right)\\ \Leftrightarrow\left[{}\begin{matrix}x-2=6\\2-x=6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\left(tm\right)\\x=-4\left(tm\right)\end{matrix}\right.\)
