A=\(\dfrac{4x^2+\left(2x+3\right)\left(x+1\right)-9}{9x^2-4}\)
a) Rút gọn A
b) Tìm các số nguyên x để A đạt giá trị nguyên
cho \(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}\)
tính giá trị biểu thức \(P=x^{2020}+\left(y-1\right)^{2022}+\left(z-1\right)^{2023}\)
cho biểu thức P=\(\left(\dfrac{3}{x+1}+\dfrac{x-9}{x^2-1}+\dfrac{2}{1-x}\right):\dfrac{x-3}{x^2-1}\)
a.với đkxđ của P:x\(\ne\pm1;\)x\(\ne\pm3\). hãy rút gọn biểu thức P
b.tính giá trị của biểu thức P biết x^2-9=0
c.tìm các giá trị nguyên của x để P nhận giá trị nguyên
\(A=\left(\dfrac{1}{x^2-1}+\dfrac{1}{x+1}\right):\left(\dfrac{1}{x-1}-\dfrac{1}{x}\right)\) với \(x\ne0;x\ne\pm1\)
a)Rút gọn A
b) Tính giá trị của b thức A với x thỏa mãn |x-1|=3
Cho \(M=\left[\dfrac{\left(x-1\right)^2}{3x+\left(x+1\right)^2}-\dfrac{1-2x^2+4x}{x^3-1}+\dfrac{1}{x-1}\right]:\dfrac{2x}{x^3+x}\)
a, Rút gọn biểu thức M
b, Tìm giá trị của x để M đạt GTNN
Cho phân thức :\(\dfrac{3x+3}{x^2-1}\)
a) Tìm điều kiện của x để giá trị của phân thức được xác định . Tìm giá trị của x để phân thức có giá trị bằng -2
b) Tìm giá trị của x để phân thức có giá trị là số nguyên
Cho biểu thức :
A = \(\left(\dfrac{x+1}{x^2-1}+\dfrac{2}{x+1}-\dfrac{3}{x}\right):\dfrac{x+2}{x^2-1}+\dfrac{6x^2-3x}{x^3+2x^2}-2+x\)
a) Rút gọn biểu thức A
b) Tìm x để A có giá trị âm, giá trị dương.
chứng minh rằng :
a) \(\left(\dfrac{x^2-2x}{2x^2+8}-\dfrac{2x^2}{8-4x+2x^2-x}\right)\left(1-\dfrac{1}{x}-\dfrac{2}{x^2}\right)=\dfrac{x+1}{2x}\)
b)\(\left[\dfrac{2}{3x}-\dfrac{2}{x+1}\left(\dfrac{x+1}{3x}-x-1\right)\right]:\dfrac{x+1}{x}=\dfrac{2x}{x-1}\)
c)\(\left[\dfrac{2}{\left(x+1\right)^3}\left(\dfrac{1}{x}+1\right)+\dfrac{1}{x^2+2x+1}\left(\dfrac{1}{x^2}+1\right)\right]:\dfrac{x-1}{x^3}=\dfrac{x}{x-1}\)
Tìm giá trị nhỏ nhất: \(\dfrac{2\left|x-1\right|+11}{\left|x-1\right|+7}\)