Tìm x , y ,z biết :
a, \(\dfrac{x}{10}\) = \(\dfrac{y}{6}\) = \(\dfrac{z}{21}\) và 5x + y - 2z = 28
b, \(\dfrac{x}{15}\) = \(\dfrac{y}{20}\) = \(\dfrac{z}{28}\) và 2x + 3y - z = 124
c, \(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{5}\) và x + y + z = 49
d, 3x = 2y ; 7y = 5z và x - y + z = 32
Các bạn cố gắng giúp mình nhé
a. Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{6}=\dfrac{y}{10}=\dfrac{z}{21}=\dfrac{5x+y-2z}{6\cdot5+10-2\cdot21}=\dfrac{28}{-2}=-14\)
\(\Rightarrow x=\left(-14\right)6=-84;y=\left(-14\right)10=-140;z=\left(-14\right)21=-294\)
Vậy \(x=-84;y=-140;z=-294\)
b. Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}=\dfrac{2x+3y-z}{2\cdot15+3\cdot20-28}=\dfrac{124}{62}=2\)
\(x=2\cdot15=30;y=2\cdot20=40;z=2\cdot28=56\)
Vậy \(x=30;y=40;z=56\)
c. Ta có: \(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{5}\Rightarrow\dfrac{12x}{18}=\dfrac{12y}{16}=\dfrac{12z}{15}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{12x}{18}=\dfrac{12y}{16}=\dfrac{12z}{15}=\dfrac{12x+12y+12z}{18+16+15}=\dfrac{12\left(x+y+z\right)}{49}=\dfrac{12\cdot49}{49}=12\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{12x}{18}=12\\\dfrac{12y}{16}=12\\\dfrac{12z}{15}=12\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}12x=216\\12y=192\\12z=180\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=18\\y=16\\z=15\end{matrix}\right.\)
Vậy \(x=18;y=16;z=15\)
d. Ta có:
\(3x=2y\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{x}{10}=\dfrac{y}{15}\)
\(7y=5z\Rightarrow\dfrac{y}{5}=\dfrac{z}{7}\Rightarrow\dfrac{y}{15}=\dfrac{z}{21}\)
\(\Rightarrow\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}\)
Áp dụng tính chất của tỉ số bằng nhau ta có:
\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}=\dfrac{x-y+z}{10-15+21}=\dfrac{32}{16}=2\)
\(\Rightarrow x=2\cdot10=20;y=2\cdot15=30;z=2\cdot21=42\)
Vậy \(x=20;y=30;z=42\)
a) \(\dfrac{x}{10}=\dfrac{y}{6}=\dfrac{z}{21}\Leftrightarrow\dfrac{5x}{50}=\dfrac{y}{6}=\dfrac{2z}{42}\)\(=\dfrac{5x+y-2z}{50+6-42}=\dfrac{28}{14}=2\)
\(\Rightarrow\dfrac{5x}{50}=2\Rightarrow5x=100\Rightarrow x=20\)
\(\Rightarrow\dfrac{y}{6}=2\Rightarrow y=2.6\Rightarrow y=12\)
\(\Rightarrow\dfrac{2z}{42}=2\Rightarrow2z=84\Rightarrow z=42\)
Vậy \(x=20;y=12\) và \(z=42\)
b) \(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\Leftrightarrow\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}=\dfrac{2x+3y-z}{30+60-28}=\dfrac{124}{62}=2\)
\(\Rightarrow\) \(\dfrac{2x}{30}=2\Rightarrow2x=60\Rightarrow x=30\)
\(\Rightarrow\dfrac{3y}{60}=2\Rightarrow3y=120\Rightarrow y=40\)
\(\Rightarrow\dfrac{z}{28}=2\Rightarrow z=56\)
Vậy \(x=30;y=40;z=56\)
d) \(3x=2y;7y=5z\)
\(\Leftrightarrow\dfrac{x}{2}=\dfrac{y}{3};\dfrac{y}{5}=\dfrac{z}{7}\)
\(\Leftrightarrow\dfrac{x}{10}=\dfrac{y}{15};\dfrac{y}{15}=\dfrac{z}{21}\)
\(\Leftrightarrow\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}=\dfrac{x-y+z}{10-15+21}=\dfrac{32}{16}=2\)
\(\Rightarrow\dfrac{x}{10}=2\Rightarrow x=10.2\Rightarrow x=20\)
\(\Rightarrow\dfrac{y}{15}=2\Rightarrow y=15.2\Rightarrow y=30\)
\(\Rightarrow\) \(\dfrac{z}{21}=2\Rightarrow z=21.2\Rightarrow z=42\)
Vậy \(x=20;y=30;z=42\)