Ta có: (x-32)3 =(33)2
=>x-32=32 ( do (33)2 = (32)3)
x=32+32=9+9=18
Vậy x=18
Ta có: (x-32)3 =(33)2
=>x-32=32 ( do (33)2 = (32)3)
x=32+32=9+9=18
Vậy x=18
Tìm x.
\(1,\dfrac{3}{2}\left(x-\dfrac{1}{3}\right)-\dfrac{1}{2}\left(x+\dfrac{1}{2}\right)=\dfrac{1}{4}\)
\(2,3\left(x-2\right)-4\left(x+2\right)=x+2\)
\(3,4x\left(x-1\right)+4x-2\left(x+1\right)=-2\)
\(4,x\left(x+2\right)-3\left(x-1\right)=3\left(x+1\right)\)
tìm x biết :
\(\left|x-1\right|+2.\left|x-2\right|+3.\left|x-3\right|+4.\left|x-4\right|+5.\left|x-5\right|+20x=0\)
Tìm x, y biết :
\(\left|x+3\right|+\left|x-1\right|=\dfrac{16}{\left|y-2\right|+\left|y+2\right|}\)
Tìm giá trị nhỏ nhất của :
G = \(\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+...+\left|x-2021\right|\)
Tìm x;y biết :
\(\dfrac{6}{\left(x-1\right)^2+2}=\left|y-1\right|+\left|y-2\right|+\left|y-3\right|+1\)
Bài 1: Thu gọn
a) \(\frac{1}{5}x^4y^3-3x^4y^3\)
b) \(5x^2y^5-\frac{1}{4}x^2y^5\)
c) \(\frac{1}{7}x^2y^3.\left(-\frac{14}{3}xy^2\right)-\frac{1}{2}xy.\left(x^2y^{\text{4}}\right)\)
d) \(\left(3xy\right)^2.\left(-\frac{1}{2}x^3y^2\right)\)
e) \(-\frac{1}{4}xy^2+\frac{2}{5}x^2y+\frac{1}{2}xy^2-x^2y\)
f) \(\frac{1}{2}x^4y.\left(-\frac{2}{3}x^3y^2\right)-\frac{1}{3}x^7y^3\)
g) \(\frac{1}{2}x^2y.\left(-10x^3yz^2\right).\frac{1}{4}x^5y^3z\)
h) \(4.\left(-\frac{1}{2}x\right)^2-\frac{3}{2}x.\left(-x\right)+\frac{1}{3}x^2\)
i) \(1\frac{2}{3}x^3y.\left(\frac{-1}{2}xy^2\right)^2-\frac{5}{4}.\frac{8}{15}x^3y.\left(-\frac{1}{2}xy^2\right)^2\)
k) \(-\frac{3}{2}xy^2.\left(\frac{3}{4}x^2y\right)^2-\frac{3}{5}xy.\left(-\frac{1}{3}x^4y^3\right)+\left(-x^2y\right)^2.\left(xy\right)^2\)
n) \(-2\frac{1}{5}xy.\left(-5x\right)^2+\frac{3}{4}y.\frac{2}{3}\left(-x^3\right)-\frac{1}{9}.\left(-x\right)^3.\frac{1}{3}y\)
m) \(\left(-\frac{1}{3}xy^2\right)^2.\left(3x^2y\right)^3.\left(-\frac{5}{2}xy^2z^3\right)^{^2}\)
p) \(-2y.\left|2\right|x^4y^5.\left|-\frac{3}{4}\right|x^3y^2z\)
Tìm x:
\(3\left|x+4\right|-\left|2x+1\right|-5\left|x+3\right|+\left|x-9=5\right|\)
\(\left|x-2\right|+\left|x-3\right|+\left|2x-8\right|=9\\ \left|x+2\right|+\left|x+3\right|+\left|x+1\right|=4\\ \left|x+\dfrac{1}{1.5}\right|+\left|x+\dfrac{1}{5.9}\right|+\left|x+\dfrac{1}{9.13}\right|+...+\left|x+\dfrac{1}{397.401}\right|=101x\)
Tìm x biết : a) \(\left|x^3-x-1\right|=x^3+x+1\)
b) \(\left|x^4+x^2+1\right|=x^2-x-1\)
tìm GTNN của biểu thức:
P = \(\left[{}\left(\frac{-1}{3}\right)^2}x^3+\left(2x^2\right)^2+\frac{1}{2}]-\left[{}x\left(\frac{1}{3}x\right)^2+\begin{matrix}3\\2^3\end{matrix}\right.+x^4]+\left(y-2013\right)^2\)
Tìm \(x,\) biết:
a) \(4\left|3x-1\right|+\left|x\right|-2\left|x-5\right|+7\left|x-3\right|=12\)
b) \(3\left|x+4\right|-\left|2x+1\right|-5\left|x+3\right|+\left|x+9\right|=5\)
c) \( \left|2\frac{1}{5}-x\right|+\left|x-\frac{1}{5}\right|+8\frac{1}{5}=1,2\)
d) \(2\left|x+3\frac{1}{2}\right|+\left|x\right|-3\frac{1}{2}=\left|2\frac{1}{5}-x\right|\)