\(\left|2x-3\right|-x=\left|2-x\right|\)
\(\Rightarrow2x-3-x=2-x\)
\(\Rightarrow2x+x-x=2+3\)
\(\Rightarrow2x=5\)
\(\Rightarrow x=2,5\)
Vậy \(x=2,5\)
\(\left|2x-3\right|-x=\left|2-x\right|\)
\(\Rightarrow2x-3-x=2-x\)
\(\Rightarrow2x+x-x=2+3\)
\(\Rightarrow2x=5\)
\(\Rightarrow x=2,5\)
Vậy \(x=2,5\)
Tìm x, biết:
a) \(\left(5x+1\right)^2=\dfrac{36}{49}\)
b) \(\left[\left(-0,5\right)^3\right]^x=\dfrac{1}{64}\)
c) \(2020^{\left(x-2\right).\left(2x+3\right)}=1\)
d) \(\left(x+1\right)^{x+10}=\left(x+1\right)^{x+4}\) với \(x\in Z\)
e) \(\dfrac{3}{4}\sqrt{x}-\dfrac{1}{2}=\dfrac{1}{3}\)
\(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+\left|x+\frac{1}{12}\right|+\left|x=\frac{1}{20}\right|+...+\left|x+\frac{1}{101}\right|=101x\)
2. Tìm x, y, z biết\(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)
3.Tìm x\(a,2009-\left|x-2009\right|=x\)
\(b,\left|3x+2\right|=\left|5x-3\right|\)
Tìm x,biết:
\(\left|\left(x+\frac{1}{2}\right).\right|2x-\frac{3}{4}\left|\right|=2x-\frac{3}{4}\)
tìm x biết
a) \(\left|2x-7\right|=3\)
b) \(\left|21x-5\right|=\left|3x-7\right|\)
c) \(\left|7-2x\right|=1-3x\)
d) \(\left|x^2+3x\right|+\left|x^2+4x+3\right|=0\)
Tìm giá trị nhỏ nhất của biểu thức :
a) A=\(\left|x+2\right|+\left|2x-3\right|+\left|x-5\right|\)
b) B=\(\left|x+2\right|+\left|3x-1\right|+\left|x-7\right|+5\)
c) C=\(\left|x+1\right|+4\left|2x-7\right|+\left|x-5\right|\)
d) D=\(\left|x+4\right|+5\left|x+1\right|+\left|x-2\right|+5\)
Tìm tất cả các cặp số \(\left(x,y\right)\) thoả mãn: \(\left(2x-y+7\right)^{2022}+\left|x-3\right|^{2023}\le0\)
Bài 4.1: Tìm x, biết
a) \(4\left|3x-1\right|+\left|x\right|-2\left|x-5\right|+7\left|x-3\right|=12\)
b) \(3\left|x+4\right|-\left|2x+1\right|-5\left|x+3\right|+\left|x-9\right|=5\)
c) \(\left|2\frac{1}{5}-x\right|+\left|x-\frac{1}{5}\right|+8\frac{1}{5}=1,2\)
d) \(2\left|x+3\frac{1}{2}\right|+\left|x\right|-3\frac{1}{2}=\left|2\frac{1}{5}-x\right|\)
Tìm các số nguyên x sao cho tích của 2 số hữu tỉ \(-\dfrac{3}{x-1};\dfrac{x-2}{2}\) là một số nguyên
Giải :
Ta có :
\(-\dfrac{3}{x-1}.\dfrac{x-2}{2}=\dfrac{-3\left(x-2\right)}{\left(x-1\right).2}=\dfrac{-3x+6}{2x-2}\)
\(\dfrac{-3x+6}{2x-2}\) là một số nguyên khi \(-3x+6⋮2x-2\)
\(\Leftrightarrow2\left(-3x+6\right)+3\left(2x-2\right)⋮2x-2\\ \Leftrightarrow-6x+12+6x-6⋮2x-2\\ \Leftrightarrow\left(-6x+6x\right)+\left(12-6\right)⋮2x-2\\ \Leftrightarrow6⋮2x-2\\ \Leftrightarrow2x-2\inƯ\left(6\right)=\left\{1;-1;2;-2;3;-3;6;-6\right\}\\ \Leftrightarrow2x\in\left\{3;1;4;0;5;-1;8;-4\right\}\\ \Leftrightarrow x\in\left\{2;0;4;-2\right\}\)
Giups e vs
Tính :
a, \(\left(2x-\dfrac{1}{2}\right)^3\)
b, \(\left(\dfrac{x}{2}-y\right)\left(\dfrac{x}{2}+y\right)\)
c\(\left(x+\dfrac{1}{3}\right)^3\)
d\(\left(x-2\right)\left(x^2+2x+4\right)\)
Tìm X, biết:
\(\left|x-3\right|-2x=\left|x-4\right|\)