1. Tìm tất cả các số tự nhiên \(n\) để phân thức sau tối giản: \(A=\dfrac{2n^2+3n+1}{3n+1}\)
2. Cho các số thực dương x, y, z thỏa mãn \(xy^2z^2+x^2z+y=3z^2\) .Tìm giá trị lớn nhất của biểu thức: \(M=\dfrac{z^4}{1+z^4\left(x^4+y^4\right)}\)
1.Cho x, y là các số thực không âm . Tìm Max của \(\frac{\left(x^2-y^2\right)\left(1-x^2y^2\right)}{\left(1+x^2\right)\left(1+y^2\right)}\)
2.cho a,b,c >0 thỏa mãn \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}=2\).CMR \(abc\le\frac{1}{8}\)
3.Giải phương trình : \(x^3-4\sqrt[3]{4x-3}+3=0\)
4.Tìm x,y thỏa mãn \(5x-2\sqrt{x}\left(2+y\right)+y^2+1=0\)
5.Giải phương trình \(\left(2x^3-3x+1\right)\left(2x^2+5x+1\right)=9x^2\)
6.cho các số dương a , b , c thỏa mãn a+b+c = 4. CMR \(\sqrt[4]{a^3}+\sqrt[4]{b^3}+\sqrt[4]{c^3}>2\sqrt{2}\)
7. Tìm Max của S = \(5x^2+9y^2-12xy+24x-48y+2016\)
8. Giải phương trình \(4\sqrt{x+1}=x^2-5x+14\)
Rút gọn:
\(A=\frac{x^2+5x+6+x\sqrt{9-x^2}}{3x-x^2+\left(x+2\right).\sqrt{9-x^2}}\)
\(B=\frac{x^2-5x+6+3\sqrt{x^2-6x+8}}{3x-12+\left(x-3\right).\sqrt{x^2-6x+8}}\)
\(C=\frac{\sqrt{2\sqrt{4-x^2}}.\left(\sqrt{\left(2+x\right)^3}-\sqrt{\left(2-x\right)^3}\right)}{4+\sqrt{4-x^2}}\)
B=\(\frac{x^3-3x+\left(x^2-1\right)\sqrt{x^2-4-2}}{x^3-3x+\left(x^2-1\right)\sqrt{x^2-4+2}}\)
cho x,y,z là các số thực thỏa mãn \(\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{y}+\sqrt{z}\right)\left(\sqrt{z}+\sqrt{x}\right)=1\)
Tính giá trị biểu thức P=\(\dfrac{\sqrt{y}-\sqrt{z}}{x\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)+1+\sqrt{xyz}}+\dfrac{\sqrt{z}-\sqrt{x}}{y\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)+1+\sqrt{xyz}}+\dfrac{\sqrt{x}-\sqrt{y}}{z\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)+1+\sqrt{xyz}}\)
\(\left\{{}\begin{matrix}\frac{1}{x}-\frac{1}{y-2}=-1\\\frac{4}{x}+\frac{3}{y-2}=5\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\frac{x+2}{x+1}+\frac{2}{y-2}=6\\\frac{5}{x+1}-\frac{1}{y-2}=3\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\frac{1}{x}+2\left(x+y\right)=3\\3x\left(x+y\right)-x=2\end{matrix}\right.\)
Cho 3 số thực x,y,z thỏa mãn \(x+y=\left(\sqrt{x}+\sqrt{y}-\sqrt{z}\right)^2\)
Chứng minh: \(\dfrac{x+\left(\sqrt{x}-\sqrt{z}\right)^2}{y+\left(\sqrt{y}-\sqrt{z}\right)^2}=\dfrac{\sqrt{x}-\sqrt{z}}{\sqrt{y}-\sqrt{z}}\)
tìm x sốthực thỏa mãn: \(x^2\left(2x+3\right)=2\left(3x-2\right)\)