a/ Ta có :
\(2n-5⋮n+1\)
Mà \(n+1⋮n+1\)
\(\Leftrightarrow\left\{{}\begin{matrix}2n-5⋮n+1\\2n+2⋮n+1\end{matrix}\right.\)
\(\Leftrightarrow7⋮n+1\)
\(\Leftrightarrow n+1\inƯ\left(7\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}n+1=1\\n+1=7\\n+1=-1\\n+1=-7\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}n=0\\n=6\\n=-2\\n=-8\end{matrix}\right.\)
Vậy ..
b/ \(3n-5⋮n\)
Mà \(n⋮n\)
\(\Leftrightarrow\left\{{}\begin{matrix}3n-5⋮n\\3n⋮n\end{matrix}\right.\)
\(\Leftrightarrow5⋮n\)
\(\Leftrightarrow n\inƯ\left(5\right)\)
\(\Leftrightarrow n\in\left\{1;5;-1;-5\right\}\)
Vậy ..
a) 2n - 5 \(⋮\) (n + 1)
Vì (n + 1) \(⋮\) (n + 1)
\(\Rightarrow\) (2n + 2) \(⋮\) (n + 1)
\(\Rightarrow\) (2n - 5 + 7) \(⋮\) (n + 1)
\(\Rightarrow\) (2n - 5 + 7) - (2n - 5) \(⋮\) (n + 1)
\(\Rightarrow\) 7 \(⋮\) (n + 1)
\(\Rightarrow\) n + 1 \(\in\) Ư(7) = {-7; -1; 1; 7}
\(\Rightarrow\) n \(\in\) {-8; -2; 0; 6}
Vậy n \(\in\) {-8; -2; 0; 6}.
b) (3n - 5)\(⋮\) n
Vì n \(⋮\) n \(\Rightarrow\) 3n \(⋮\) n
\(\Rightarrow\) (3n - 5) \(⋮\) n khi 5 \(⋮\) n
\(\Rightarrow\) n \(\in\) Ư(5) = {-5; -1; 1; 5}
Vậy n \(\in\) Ư(5) = {-5; -1; 1; 5}.