a) ⇔ |2x+3| = 8
⇒ \(\left[{}\begin{matrix}2x+3=8\\2x+3=-8\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}2x=5\\2x=-11\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{11}{2}\end{matrix}\right.\)
Vậy...
b) ĐKXĐ: \(x\ge0\)
\(\Leftrightarrow3\sqrt{x}-7\sqrt{x}+6\sqrt{x}=8\)
\(\Leftrightarrow2\sqrt{x}=8\)
\(\Leftrightarrow\sqrt{x}=4\)
\(\Leftrightarrow x=16\) (Vì \(x\ge0\) )
Vậy x = 16
c) ĐKXĐ: \(x\ge1\)
\(\Leftrightarrow\sqrt{9\left(x-1\right)}=12\)
\(\Leftrightarrow3\sqrt{x-1}=12\)
\(\Leftrightarrow\sqrt{x-1}=4\)
\(\Leftrightarrow x-1=16\)
\(\Leftrightarrow x=17\)(TM)
Vậy x = 17
b) \(\sqrt{\text{9x}}-7\sqrt{x}=8-6\sqrt{x}\) (ĐK: x≥0)
⇔ \(\text{3}\sqrt{\text{x}}-7\sqrt{x}+\text{6}\sqrt{x}=8\)
⇔ \(\sqrt{x}=4\)
⇔ \(x=16\) (TMĐK)
Vậy x = 16
a)\(\Rightarrow2x+3=8\Rightarrow2x=5\Rightarrow x=\dfrac{5}{2}\)
b)\(\sqrt{9x}-7\sqrt{x}=8-6\sqrt{x}\Rightarrow3\sqrt{x}-\sqrt{x}=8\)
\(\Rightarrow2\sqrt{x}=8\Rightarrow\sqrt{x}=4\Rightarrow x=16\)
c)\(\sqrt{9x-9}+1=13\Rightarrow3\sqrt{x-1}=12\)\(\Rightarrow\sqrt{x-1}=4\Rightarrow x-1=16\Rightarrow x=17\)
a)\(\Rightarrow2x+3=8\Rightarrow2x=5\Rightarrow x=\dfrac{5}{2}\)
b)\(\sqrt{9x}-7\sqrt{x}=8-6\sqrt{x}\Rightarrow3\sqrt{x}-\sqrt{x}=8\)
\(\Rightarrow2\sqrt{x}=8\Rightarrow\sqrt{x}=4\Rightarrow x=16\)
c)\(\sqrt{9x-9}+1=13\Rightarrow3\sqrt{x-1}=12\)\(\Rightarrow\sqrt{x-1}=4\Rightarrow x-1=16\Rightarrow x=17\)