\(x+2x+3x+4x+.....+2011x=2012.2013\)
\(1x+2x+3x+4x+.....+2011x=2012.2013\)
\(1x+2x+3x+4x+.....+2011x=4050156\)
\(x(1+2+3+4+.....+2011)=4050156\)
\(x.2011.(2011+1):2=4050156\)
\(x.2023066=4050156\)
\(x=4050156:2023066\)
\(x=2...............\)
Ta có
x + 2x + 3x + 4x + 5x + ... + 2011x = 2012.2013
x + 2x + 3x + 4x + 5x + ... + 2011x = 4050156
x(2 + 3 + 4 + ... + 2011) = 4050156
x.2023066 = 40501156
x = 40501156 : 2023066
x = 20,...
Ta có:x+2x+3x+...+2011x=2012.2013
=>x(1+2+3+...+2011)=2012.2013
=>x.\(\dfrac{2011.2012}{2}\)=2012.2013
=>x.2011.2012=2.2012.2013
=>2011x=2.2013=>x=4026:2011=\(\dfrac{4026}{2011}\)
\(x+2x+3x+4x+...........+2011x=2012.2013\)
\(\Leftrightarrow x\left(1+2+3+4+..........+2011\right)=2012.2013\)
\(\Leftrightarrow x\left(2012.1005+1006\right)=2012.2013\)
\(\Leftrightarrow2023066x=2012.2013\)
\(\Leftrightarrow2023066x=4050156\Rightarrow x=2,00213735\)
x+2x+3x+4x+.....+2011x=2012.2013x+2x+3x+4x+.....+2011x=2012.2013
1x+2x+3x+4x+.....+2011x=2012.20131x+2x+3x+4x+.....+2011x=2012.2013
1x+2x+3x+4x+.....+2011x=40501561x+2x+3x+4x+.....+2011x=4050156
x(1+2+3+4+.....+2011)=4050156x(1+2+3+4+.....+2011)=4050156
x.2011.(2011+1):2=4050156x.2011.(2011+1):2=4050156
x.2023066=4050156x.2023066=4050156
x=4050156:2023066x=4050156:2023066
x=2........................
x+2x+3x+4x+...+2011x=2012.2013
1x+2x+3x+4x+...+2011x=2012.2013
1x+2x+3x+4x+...+2011x=4050156
x(1+2+3+4+...+2011)=4050156
x.2011.(2011+1):2=4050156
x.2023066=4050156
x=4050156:2023066
x=20,0437282868