x=+\(\sqrt{16}\)hoặc-\(\sqrt{16}\)
x=+4 hoặc -4
\(x^2\)=16
=>x=+√16hoặc-√16
x=+4 hoặc -4
x=+\(\sqrt{16}\)hoặc-\(\sqrt{16}\)
x=+4 hoặc -4
\(x^2\)=16
=>x=+√16hoặc-√16
x=+4 hoặc -4
Tìm x, y biết :
\(\left|x+3\right|+\left|x-1\right|=\dfrac{16}{\left|y-2\right|+\left|y+2\right|}\)
Tìm x biết: 4/(x+2).(x+6) + 7/(x+6).(x+13) = 2x+1/(x+2).(x+16) - 3/(x+13).(x+16)
Tìm x biết: 4/(x+2).(x+6) + 7/(x+6).(x+13) = 2x+1/(x+2).(x+16) - 3/(x+13).(x+16)
Tìm x biết: 4/(x+2).(x+6) + 7/(x+6).(x+13) = 2x+1/(x+2).(x+16) - 3/(x+13).(x+16)
Tìm x biết: 4/(x+2).(x+6) + 7/(x+6).(x+13) = 2x+1/(x+2).(x+16) - 3/(x+13).(x+16)
Tìm số nguyên dương x,y thỏa mãn 21^x+16^y-10=(Căn 3)^y!, biết y!=1.2.3...y
Tìm x biết: \(\frac{4}{\left(x+2\right).\left(x+6\right)}+\frac{7}{\left(x+6\right).\left(x+13\right)}=\frac{2x+1}{\left(x+2\right).\left(x+16\right)}-\frac{3}{\left(x+13\right).\left(x+16\right)}\)
Tìm x biết: \(\frac{4}{\left(x+2\right).\left(x+6\right)}+\frac{7}{\left(x+6\right).\left(x+13\right)}=\frac{2x+1}{\left(x+2\right).\left(x+16\right)}-\frac{3}{\left(x+13\right).\left(x+16\right)}\)
Tìm x,y,z biết: x/2=y/3 ; y/4=z/5 và x^2 - y^2 = -16
tìm x biết \(\text{(x^2-3)^2 = 16}\)