Ta có: \(\dfrac{1}{3.3}\left(\dfrac{1}{5.8}+\dfrac{1}{8.11}+\dfrac{1}{11.14}+...+\dfrac{1}{x\left(x+1\right)}\right)=\dfrac{101}{1540}\)
\(\dfrac{1}{3}\left(\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{14}+...+\dfrac{1}{x}-\dfrac{1}{x+3}\right)\)\(=\dfrac{101}{1540}\)
\(\dfrac{1}{3}\left(\dfrac{1}{5}-\dfrac{1}{x+3}\right)=\dfrac{101}{1540}\)
\(\dfrac{1}{5}-\dfrac{1}{x+3}=\dfrac{303}{1540}\)
\(\dfrac{1}{x+3}=\dfrac{1}{5}-\dfrac{303}{1540}=\dfrac{1}{308}\)
\(\Rightarrow x+3=308\Rightarrow x=305\)
Ta có:
\(\dfrac{1}{5\times8}+\dfrac{1}{8\times11}+\dfrac{1}{11\times14}+...+\dfrac{1}{x\left(x+3\right)}=\dfrac{101}{1540}\)
\(\dfrac{1}{3}\left(\dfrac{3}{5\times8}+\dfrac{3}{8\times11}+\dfrac{3}{11\times14}+...+\dfrac{1}{x\left(x+3\right)}\right)=\dfrac{101}{1540}\)
\(\dfrac{1}{3}\left(\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{14}+...+\dfrac{1}{x}-\dfrac{1}{x+3}\right)=\dfrac{101}{1540}\)\(\dfrac{1}{3}\left(\dfrac{1}{5}-\dfrac{1}{x+3}\right)=\dfrac{101}{1540}\)
\(\dfrac{1}{5}-\dfrac{1}{x+3}=\dfrac{101}{1540}:\dfrac{1}{3}\)
\(\dfrac{1}{5}-\dfrac{1}{x+3}=\dfrac{303}{1540}\)
\(\dfrac{1}{x+3}=\dfrac{1}{5}-\dfrac{303}{1540}\)
\(\dfrac{1}{x+3}=\dfrac{1}{308}\)
=> x + 3 = 308
x = 308 - 3
x = 305
Vậy x = 305
\(\dfrac{1}{5.8}+\dfrac{1}{8.11}+\dfrac{1}{11.14}+...+\dfrac{1}{x.\left(x+3\right)}=\dfrac{101}{1540}\)
\(=>\dfrac{1}{3}.\left(\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{14}+...+\dfrac{1}{x}-\dfrac{1}{x+3}\right)=\dfrac{101}{1540}\)
\(=>\dfrac{1}{3}.\left(\dfrac{1}{5}-\dfrac{1}{x+3}\right)=\dfrac{101}{1540}\)
\(=>\dfrac{1}{5}-\dfrac{1}{x+3}=\dfrac{101}{1540}.3\)
\(=>\dfrac{x+3-5}{5.\left(x+3\right)}=\dfrac{303}{1540}\)
\(=>\dfrac{x-2}{5x+15}=\dfrac{303}{1540}\)
\(=>1540.\left(x-2\right)=303.\left(5x+15\right)\)
\(=>1540x-3080=1515x+4545\)
\(=>1540x-1515x=3080+4545\)
\(=>25x=7625\)
\(=>x=305\)
Vậy x = 305
tick cho mk nha
co gì chưa hiểu thì hỏi nha