(x-3)∈{1;-1}
⇒ x∈{-2;-4}
Vậy x=-2 hoặc (-4)
Tick mk nha
TH1: x-3 = -1 =>x= -1 +3 = 2
TH2 : x-3 = 1 => x = 1 + 3 = 4
x ={2,4}
(x-3)∈{1;-1}
⇒ x∈{-2;-4}
Vậy x=-2 hoặc (-4)
Tick mk nha
TH1: x-3 = -1 =>x= -1 +3 = 2
TH2 : x-3 = 1 => x = 1 + 3 = 4
x ={2,4}
1) \(\left|x+1\right|=\left|x+3\right|\)
2) \(\left|x+2\right|+\left|x+3\right|=3.x+3\)
3) \(\left|x+1\right|+\left|x+2\right|=4\)
Tìm x,biết
a, \(\frac{3}{\left(x+2\right)\left(x+5\right)}+\frac{5}{\left(x+5\right)\left(x+10\right)}+\frac{7}{\left(x+10\right)\left(x+17\right)}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)
Với x ∉ -2,-5,-10,-17
b,\(\frac{2}{\left(x-1\right)\left(x-3\right)}+\frac{5}{\left(x-3\right)\left(x-8\right)}+\frac{12}{\left(x-8\right)\left(x-20\right)}-\frac{1}{x-20}=\frac{-3}{4}\)
Với x∉1,3,8,20
c,\(\frac{x-1}{2009}+\frac{x-2}{2008}=\frac{x-3}{2007}+\frac{x-4}{2006}\)
1) \(\left|3x+2\right|=\left|x+1\right|\)
2) \(\left|\left(x+2\right)\times x\right|=\left|x+2\right|\)
3) \(\left|2x+3\right|=x+1\)
4) \(\left|4x+5\right|+3.x=7\)
Tìm min của:
1) F = \(\left|x+1\right|+\left|x+2\right|+\left|x-1\right|+\left|x-2\right|\)
2) G = \(x^2+y^2+2\)
3) H = \(\left(x+1\right)^2+\left(y-2\right)^2+3\)
\(\left(3\dfrac{1}{2}x-3\right)-\left(\dfrac{2}{3}x-1\right)+\left(-\dfrac{5}{6}x-2\right)=-3\)
\(5^{\left(x-2\right).\left(x+3\right)}=1\)
\(-\left(x-y\right)^2=\left(y-3\right)^2\)
\(7^{\left(2x-1\right).\left(3x-1\right)}=1\)
5. Tìm x biết:
a, \(\left|x+1\right|+\left|x+2\right|+\left|x+3\right|+...+\left|x+10\right|=11x+1\)
b, \(\left|x+\frac{1}{101}\right|+\left|x+\frac{2}{101}\right|+...+\left|x+\frac{100}{101}\right|=101x\)
tìm x biết:
a) \(\left(x-2\right)^2+\left(y-3\right)^2=0\)
b) \(5^{\left(x-2\right).\left(x+3\right)}=1\)
c) \(-\left(-x-y\right)^2=\left(yz-3\right)^2\)
Tìm x, y, z:
a) \(\left|x+\dfrac{19}{5}\right|+\left|y+\dfrac{1890}{1975}\right|+\left|z-2005\right|=0\)
b) \(\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{1}{5}\right|+\left|x+y+z\right|\) = 0
c) \(\dfrac{16}{2^x}=1\)
d) \(\left(2x-1\right)^3=-27\)
e) \(\left(x-2\right)^2=1\)
f) \(\left(x+\dfrac{1}{2}\right)^2=\dfrac{4}{25}\)
g) \(\left(x-1\right)^2=\left(x-1\right)^6\)