Bài 1: Tìm x , biết :
\(a,x^2-3x=0\)
\(\Rightarrow x\left(x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-3=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
\(b,x^3-x=0\)
\(\Rightarrow x\left(x^2-1\right)=0\)
\(\Rightarrow x\left(x-1\right)\left(x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-1=0\\x+1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)
Bài 2: Phân tích đã thức thành nhân tử
\(a,3x-6y+xy-2y\)
\(=\left(3x-6y\right)+\left(xy-2y\right)\)
\(=3\left(x-2\right)+y\left(x-2\right)\)
\(=\left(x-2\right)\left(3+y\right)\)
\(b,x^2-2x-y^2+1\)
\(=\left(x^2-2x+1\right)-y^2\)
\(=\left(x-1\right)^2-y^2\)
\(=\left(x-1-y\right)\left(x-1+y\right)\)
\(c,x^2-4x+3\)
\(=x^2-3x-x+3\)
\(=\left(x^2-3x\right)-\left(x-3\right)\)
\(=x\left(x-3\right)-\left(x-3\right)\)
\(=\left(x-3\right)\left(x-1\right)\)
Baid 1 a)\(x^2-3x=0\)
\(\Rightarrow x\left(x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-3=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
Vậy \(x\in\left\{0,3\right\}\)
b)\(x^3-x=0\)
\(\Rightarrow x\left(x^2-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x^2-1=0\end{matrix}\right.\)
\(\Rightarrow x\left(x-1\right)\left(x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-1=0\\x+1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)
Vậy \(x\in\left\{0,1,-1\right\}\)
Bài 2:
a)\(3x-6y+xy-2y^2\)
\(=\left(3x-6y\right)+\left(xy-2y^2\right)\)
\(=3\left(x-2y\right)+y\left(x-2y\right)\)\(=\left(y-2\right)\left(x+3\right)\)
b)\(x^2-2x-y^2+1\)
\(=\left(x^2-2x+1\right)-y^2\)
\(=\left(x-1\right)^2-y^2\)
\(=\left(x-1+y\right)\left(x-1-y\right)\)
c)\(x^2-4x+3\)
\(=x^2-3x-x+3\)
\(=\left(x^2-x\right)-\left(3x-3\right)\)
\(=x\left(x-1\right)-3\left(x-1\right)\)
\(=\left(x-1\right)\left(x-3\right)\)