b)\(\left|21x-5\right|=\left|3x-7\right|\)
\(\Leftrightarrow\begin{cases}21x-5=3x-7\\21x-5=7-3x\end{cases}\)
\(\Leftrightarrow\begin{cases}9x=-1\\24x=12\end{cases}\)
\(\Leftrightarrow\begin{cases}x=-\frac{1}{9}\\x=\frac{1}{2}\end{cases}\)
a)\(\left|2x-7\right|=3\)
\(\Rightarrow2x-7=\pm3\)
Nếu \(2x-7=3\)
\(\Rightarrow2x=10\)
\(\Rightarrow x=5\)
Nếu \(2x-7=-3\)
\(\Rightarrow2x=4\)
\(\Rightarrow x=2\)
c)\(\left|7-2x\right|=1-3x\)
\(\Rightarrow7-2x=\pm\left(1-3x\right)\)
Nếu \(7-2x=1-3x\)
\(\Rightarrow x=-6\)
Nếu \(7-2x=-\left(1-3x\right)\)
\(\Rightarrow7-2x=-1+3x\)
\(\Rightarrow5x=8\)
\(\Rightarrow x=\frac{8}{5}\)
d)|x2+3x|+|x2+4x+3|=0
=>|x2+3x|=-|x2+4x+3|
Vì \(\left|x^2+3x\right|\ge0>VP\)
=>ko tồn tại x thỏa mãn
a) \(\left\{\begin{matrix}2x-7=3\\2x-7=-3\end{matrix}\right.\Rightarrow\left\{\begin{matrix}2x=10\\2x=4\end{matrix}\right.\Rightarrow}\left\{\begin{matrix}x=5\\x=2\end{matrix}\right.\)