a.
\(\left(\frac{11}{12}+\frac{11}{12\times23}+\frac{11}{23\times34}+...+\frac{11}{89\times100}\right)+x=\frac{2}{3}\)
\(\left(\frac{11}{12}+\frac{1}{12}-\frac{1}{23}+\frac{1}{23}-\frac{1}{34}+...+\frac{1}{89}-\frac{1}{100}\right)+x=\frac{2}{3}\)
\(\left(\frac{11}{12}+\frac{1}{12}-\frac{1}{100}\right)+x=\frac{2}{3}\)
\(\left(\frac{12}{12}-\frac{1}{100}\right)+x=\frac{2}{3}\)
\(\left(1-\frac{1}{100}\right)+x=\frac{2}{3}\)
\(\left(\frac{100-1}{100}\right)+x=\frac{2}{3}\)
\(\frac{99}{100}+x=\frac{2}{3}\)
\(x=\frac{2}{3}-\frac{99}{100}\)
\(x=\frac{200-297}{300}\)
\(x=-\frac{97}{300}\)
b.
\(\left(\frac{2}{11\times13}+\frac{2}{13\times15}+...+\frac{2}{19\times21}\right)-x+\frac{221}{231}=\frac{4}{3}\)
\(\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+...+\frac{1}{19}-\frac{1}{21}\right)+\frac{221}{231}-x=\frac{4}{3}\)
\(\left(\frac{1}{11}-\frac{1}{21}\right)+\frac{221}{231}-x=\frac{4}{3}\)
\(\left(\frac{21-11}{231}\right)+\frac{221}{231}-x=\frac{4}{3}\)
\(\frac{10}{231}+\frac{221}{231}-x=\frac{4}{3}\)
\(\frac{231}{231}-x=\frac{4}{3}\)
\(1-x=\frac{4}{3}\)
\(x=1-\frac{4}{3}\)
\(x=\frac{3-4}{3}\)
\(x=-\frac{1}{3}\)
Chúc bạn học tốt