\(\left(1-3x\right)^2-\left(x-2\right)\left(9x+1\right)=\left(3x-4\right)\left(3x+4\right)-9\left(x+3\right)^2\)
\(\Rightarrow1-6x+9x^2-9x^2+18x-x-2=9x^2-16-9x^2-6x-9\)
\(\Rightarrow\left(-6x+18x-x+6x\right)+\left(9x^2-9x^2-9x^2+9x^2\right)=-1+2-16-9\)
\(\Rightarrow17x=-24\)
\(\Rightarrow x=-\dfrac{24}{17}.\)
Vậy \(x=-\dfrac{24}{17}.\)
\(\left(1-3x\right)^2-\left(x-2\right)\left(9x+1\right)=\left(3x-4\right)\left(3x+4\right)-9\left(x+3\right)^2\)
\(\Rightarrow1-6x+9x^2-x\left(9x+1\right)+2\left(9x+1\right)=9x^2-16-9\left(x^2+6x+9\right)\)\(\Rightarrow1-6x+9x^2-9x^2-x-18x-2=9x^2-16-9x^2-54x-81\)\(\Rightarrow-1-24x=97-54x\)
\(\Rightarrow-1-24x-97+54x=0\)
\(\Rightarrow-98x+20x=0\)
\(\Rightarrow x=\dfrac{49}{10}\)
\(\left(1-3x^{ }\right)^2-\left(x-2\right).\left(9x=1\right)=\left(3x-4\right).\left(3x+4\right)-9\left(x+3\right)^2\)
\(1-6x+9x^2-9x^2+18x-x-2=9x^2-16-9x^2-6x-9\)
\(\left(-6x+18x-x+6x\right)+\left(9x^2-9x^2-9x^2=9x^2\right)=-1+2=16-9\)
\(17x=-24\)
\(=>x=-\dfrac{24}{17}\)
Vậy \(x=-\dfrac{24}{17}\)