giải
b) x\(^4\) + 3x\(^3\) + 4x\(^2\) + 3x +1 = 0
\(\Leftrightarrow\) ( x +1 )\(^4\) = 0
\(\Leftrightarrow\) x +1 =0
\(\Leftrightarrow\) x = -1
giải
b) x\(^4\) + 3x\(^3\) + 4x\(^2\) + 3x +1 = 0
\(\Leftrightarrow\) ( x +1 )\(^4\) = 0
\(\Leftrightarrow\) x +1 =0
\(\Leftrightarrow\) x = -1
Giải phương trình
1. \(\sqrt{2}x^2+3x-1=0\)
2. \(x^4+3x^3+2x^2-3x+1=0\)
3. \(x^4-4x^3+3x^2+4x+1=0\)
4. \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)=3x^2\)
5. \(-x^4+2x^2+1=0\)
please!!!
. Thực hiện phép chia:a) \(\left(2n^3-5n^2+1\right):\left(2n-1\right)\)
b) \(\left(\frac{x^2}{x^3-4x}+\frac{6}{6-3x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)
c) \(\left(1-3x\right)^2+2\left(3x-1\right)\left(3x+4\right)+\left(3x+4\right)^2\)
Tìm GTNN của các biểu thức:
a) \(A=\left(x+8\right)^4+\left(x+6\right)^4\)
b) \(B=\left(0,5x^2+x\right)^2-3\left|0,5x^2+x\right|\)
c) \(C=\left(x-1\right)\left(x-3\right)\left(x^2-4x+5\right)\)
d) \(D=x^4-2x^3+3x^2-2x+1\)
e) E = \(x^4-6x^3+10x^2-6x+9\)
g) \(G=\left(x^2+x-6\right)\left(x^2+x+2\right)\)
Gpt:
a.\(\left(x^2-4x+3\right)^3+\left(x^2-7x+6\right)^3=\left(2x^2-11x+9\right)^3\)
b.\(\left(x+1\right)\left(x-4\right)\left(x+2\right)\left(x-8\right)+4x^2=0\)
Giải các phương trình sau :
a)\(\dfrac{5x+2}{6}\)\(-\dfrac{8x-1}{3}=\dfrac{4x+2}{5}-5\)
b)\(\dfrac{x+2}{x-2}-\dfrac{1}{x}=\dfrac{2}{x\left(x-2\right)}\)
c)\(2x^3 +6x^2=x^2+3x\)
d)\(\left|x-4\right|+3x=5\)
Giải các bất phương trình sau :
a) \(4x-8\ge3\left(3x-1\right)-2x+1\)
b) \(\left(x-3\right)\left(x+2\right)+\left(x+4\right)^2\le2x\left(x+5\right)+4\)
c) \(3x-\dfrac{x+2}{3}\le\dfrac{3\left(x-2\right)}{2}+5-x\)
d) \(x-\dfrac{x+2}{3}\ge3x-1+\dfrac{x}{2}\)
e) \(\dfrac{x\left(x+2\right)}{3}+\dfrac{\left(x-1\right)\left(x+2\right)}{2}\ge\dfrac{5\left(x+1\right)^2}{6}+1\)
f) \(\dfrac{x+5}{2012}+\dfrac{x+6}{2011}+\dfrac{x+7}{2010}>-3\)
Câu 1: Biết \(3x+2\left(5-x\right)=0\), giá trị của x là:
Câu 2: Giá trị của x thỏa mãn: \(2x.\left(5-3x\right)+2x\left(3x-5\right)-3\left(x-7\right)=3\) là:
Câu 3: Tính: \(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\) bằng:
Câu 4: Tính và thu gọn: \(3x^2\left(3x^2-2y^2\right)-\left(3x^2-2y^2\right)\left(3x^2+2y^2\right)\)
Câu 5: Biểu thức rút gọn và khai triển của R=\(\left(2x-3\right).\left(4+6x\right)-\left(6-3x\right)\left(4x-2\right)\) là:
Câu 1: Biểu thức rút gọn của: \(\left(2x+y\right)\left(4x^2-2xy+y^2\right)\) là:
Câu 2: Cho A=\(3.\left(2x-3\right)\left(3x+2\right)-2\left(x+4\right)\left(4x-3\right)+9x\left(4-x\right)\) để có giá trị bằng 0 thì x bằng:
Câu 3: Tìm x biết: \(\left(5x-3\right)\left(7x+2\right)-35x\left(x-1\right)=42\)
Câu 4: Tìm x biết: \(\left(3x+5\right)\left(2x-1\right)+\left(5-6x\right)\left(x+2\right)=x\)
Câu 5: Giá trị của biểu thức A=\(\left(2x+y\right)\left(2z+y\right)+\left(x-y\right)\left(y-z\right)\) với x=1;y=1,z=-1
Câu 6: Giá trị của x thỏa mãn \(\left(10x+9\right).x-\left(5x-1\right)\left(2x+3\right)=8\)
Caau 7: Giá trị x thỏa mãn: \(x\left(x+1\right)\left(x+6\right)-x^3=5x\) là:
Bài 3: Giải các phương trình sau:
a. 2x (x - 3) + 5(x - 3) = 0
b. \(\left(x^2-4\right)-\left(x-2\right)\left(3-2x\right)=0\)
c. \(\left(2x+5\right)^2=\left(x+2\right)^2f\))\(\left(2x+1\right)\left(3-x\right)\left(4-2x\right)=0\)
d. \(x^2-5x+6=0\)
e. \(2x^3+6x^2=x^2+3x\)