a)\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{100.103}\\ =\frac{1}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{103}\right)\\ =\frac{1}{3}.\left(1-\frac{1}{103}\right)\\ =\frac{1}{3}.\frac{102}{103}\\ =\frac{34}{103}\)
\(2x-3=x+\frac{1}{2}\\ \Leftrightarrow2x-x=3+\frac{1}{2}\\ x=\frac{7}{2}\)
Vậy ...