\(1+\frac{1}{3}+\frac{1}{6}+...+\frac{1}{x\left(x+1\right):2}=1\frac{1991}{1993}\)
\(\Rightarrow\frac{1}{3}+\frac{1}{6}+...+\frac{1}{x\left(x+1\right):2}=\frac{1991}{1993}\)
\(\Rightarrow\frac{2}{6}+\frac{2}{12}+...+\frac{2}{x\left(x+1\right)}=\frac{1991}{1993}\)
\(\Rightarrow\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{x\left(x+1\right)}=\frac{1991}{1993}\)
\(\Rightarrow2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{1991}{1993}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{1991}{3986}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{1991}{3986}\)\(\Rightarrow\frac{1}{x+1}=\frac{1}{1993}\)
\(\Rightarrow x+1=1993\Rightarrow x=1992\)