§5. Dấu của tam thức bậc hai

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phạm Ngọc An

tìm tham số m

(m+1)x2-2(m-3)x+9=0

a) pt có 2 nghiệm dương phân biệt

b)pt có 2 nghiệm phân biệt và số -1 nằm giữa 2 nghiệm

c)pt có 2 nghiệm phân biệt và số 2 lớn hơn 2 nghiệm

Nguyễn Việt Lâm
14 tháng 4 2020 lúc 15:31

\(m\ne-1\) ; \(\Delta'=\left(m-3\right)^2-9\left(m+1\right)=m^2-15m\)

a/ Để pt có 2 nghiệm dương pb

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'>0\\x_1+x_2>0\\x_1x_2>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m^2-15m>0\\\frac{2\left(m-3\right)}{m+1}>0\\\frac{9}{m+1}>0\end{matrix}\right.\) \(m>15\)

b/ Để pt có 2 nghiệm pb thỏa \(x_1< -1< x_2\)

\(\Leftrightarrow f\left(-1\right)< 0\)

\(\Leftrightarrow\left(m+1\right).1+2\left(m-3\right)+9< 0\)

\(\Leftrightarrow3m+4< 0\Rightarrow m< -\frac{4}{3}\)

c/ Để pt có 2 nghiệm pb thỏa \(x_1< x_2< 2\)

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'>0\\\left(x_1-2\right)\left(x_2-2\right)>0\\\frac{x_1+x_2}{2}< 2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m^2-15m>0\\x_1x_2-2\left(x_1+x_2\right)+4>0\\x_1+x_2< 4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2-15m>0\\\frac{9}{m+1}+\frac{4\left(m-3\right)}{m+1}+4>0\\\frac{2\left(m-3\right)}{m+1}-4< 0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m^2-15m>0\\\frac{8m+1}{m+1}>0\\\frac{-2\left(m+5\right)}{m+1}< 0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m< -5\\-1< m< -\frac{1}{8}\\m>15\end{matrix}\right.\)

Bạn tự soát lại tính toán nhé