§5. Dấu của tam thức bậc hai

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phạm Ngọc An

tìm tham số m

(m+1)x2-2(m-3)x+9=0

a) pt có 2 nghiệm dương phân biệt

b)pt có 2 nghiệm phân biệt và số -1 nằm giữa 2 nghiệm

c)pt có 2 nghiệm phân biệt và số 2 lớn hơn 2 nghiệm

Nguyễn Việt Lâm
14 tháng 4 2020 lúc 15:31

\(m\ne-1\) ; \(\Delta'=\left(m-3\right)^2-9\left(m+1\right)=m^2-15m\)

a/ Để pt có 2 nghiệm dương pb

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'>0\\x_1+x_2>0\\x_1x_2>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m^2-15m>0\\\frac{2\left(m-3\right)}{m+1}>0\\\frac{9}{m+1}>0\end{matrix}\right.\) \(m>15\)

b/ Để pt có 2 nghiệm pb thỏa \(x_1< -1< x_2\)

\(\Leftrightarrow f\left(-1\right)< 0\)

\(\Leftrightarrow\left(m+1\right).1+2\left(m-3\right)+9< 0\)

\(\Leftrightarrow3m+4< 0\Rightarrow m< -\frac{4}{3}\)

c/ Để pt có 2 nghiệm pb thỏa \(x_1< x_2< 2\)

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'>0\\\left(x_1-2\right)\left(x_2-2\right)>0\\\frac{x_1+x_2}{2}< 2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m^2-15m>0\\x_1x_2-2\left(x_1+x_2\right)+4>0\\x_1+x_2< 4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2-15m>0\\\frac{9}{m+1}+\frac{4\left(m-3\right)}{m+1}+4>0\\\frac{2\left(m-3\right)}{m+1}-4< 0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m^2-15m>0\\\frac{8m+1}{m+1}>0\\\frac{-2\left(m+5\right)}{m+1}< 0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m< -5\\-1< m< -\frac{1}{8}\\m>15\end{matrix}\right.\)

Bạn tự soát lại tính toán nhé


Các câu hỏi tương tự
lê phong
Xem chi tiết
Khano Acoh Khashi
Xem chi tiết
lofi cofi
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Phạm Ngọc An
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Hai Nguyen
Xem chi tiết
Muon Lam Quen
Xem chi tiết