tìm tất cả các số nguyên dương a,b,c là độ dài 3 cạnh của 1 tam giác thỏa mãn
\(\sqrt{\dfrac{19}{A+B-C}}+\sqrt{\dfrac{5}{B+C-A}}+\sqrt{\dfrac{79}{B+C-A}}\in N\ne1\)
Cho a,b,c >0 thỏa a+b+c \(\ge9\)
Tìm Min:
\(P=2\sqrt{a^2+\dfrac{b^2}{3}+\dfrac{c^2}{5}}+\sqrt{\dfrac{1}{a}+\dfrac{9}{b}+\dfrac{25}{c}}\)
Cho a,b,c là các số thực dương thỏa mãn a+b+c = 3
Chứng minh rằng với mọi k > 0 ta luôn có\(\Sigma\left(b+c\right)\sqrt[k]{\dfrac{bc+1}{a^2+1}}\ge6\)
Cho a,b,c là độ ài ba cạnh của một tam giác có chu vi là 3: CMR:\(\sqrt{\dfrac{ab}{a+b-c}}+\sqrt{\dfrac{bc}{b+c-a}}+\sqrt{\dfrac{ac}{c+a-b}}\ge3\)
1/ cho a,b,c thỏa \(ab+bc+ca\ge11\)
c/m \(\sqrt[3]{a^2+3}+\dfrac{7}{5\sqrt[3]{14}}\sqrt[3]{b^2+3}+\dfrac{\sqrt[3]{9}}{5}\sqrt[3]{c^2+3}\ge\dfrac{23}{5\sqrt[3]{2}}\)
2)cho a,b,c dương thỏa a+b+c=3
c/m \(\left(a^3+b^3+c^3\right)\left(a^2-b^2\right)\left(b^2-c^2\right)\left(c^2-a^2\right)\le\dfrac{729\sqrt{3}}{8}\)
p/s: cách của mik đa phần dùng cô-si (I need another way!!)
Cho 3 số thực a,b,c thỏa mãn a + b + c \(\le\) 3. C/m rằng: \(\dfrac{a}{\sqrt{a^2+1}}+\dfrac{b}{\sqrt{b^2+1}}+\dfrac{c}{\sqrt{c^2+1}}\le\dfrac{3}{2}\)
Help ạ
Cho a,b,c là các số thực dương thỏa mãn điều kiện a + b + c = 3
Tìm GTLN của biểu thức \(P=\dfrac{bc}{\sqrt{3a+bc}}+\dfrac{ca}{\sqrt{3b+ca}}+\dfrac{ab}{\sqrt{3c+ab}}\)
cho a,b,c>0 thỏa mãn ab+bc+ca=3abc
chứng minh rằng \(\dfrac{1}{\sqrt{a^3+b}}+\dfrac{1}{\sqrt{b^3+c}}+\dfrac{1}{\sqrt{c^3+a}}\le\dfrac{3}{\sqrt{2}}\)
ba số dương a,b,c thỏa mãn \(b\ne c,\sqrt{a}+\sqrt{b}\ne\sqrt{c}\) và\(a+b=\left(\sqrt{a}+\sqrt{b}-\sqrt{c}\right)^2\).chứng minh đẳng thức
\(\dfrac{a+\left(\sqrt{a}-\sqrt{c}\right)^2}{b+\left(\sqrt{b}-\sqrt{c}\right)^2}=\dfrac{\sqrt{a}-\sqrt{c}}{\sqrt{b}-\sqrt{c}}\)