Tìm tất cả các bộ số nguyên dương (x;y;z) thoả mãn \(\frac{x+y\sqrt{2013}}{y+z\sqrt{2013}}\) là số hửu tỉ , đồng thời \(x^2+y^2+z^2\) là số nguyên tố
Tìm tất cả bộ số nguyên dương(x,y,z) thỏa \(\frac{x+y\sqrt{2017}}{y+z\sqrt{2017}}\)là số hữu tỉ đồng thời (y+2)(4zx+6y-3) là số chính phương
Tìm tất cả bộ số nguyên dương (x;y;z) thỏa mãn \(\frac{x+y\sqrt{2017}}{y+z\sqrt{2017}}\) là số hữu tỉ đồng thời (y+2)(4zx+6y-3) là số chính phương.
Tìm các số nguyên dương x, y, z thỏa mãn đồng thời 2 điều kiện sau: \(\frac{x-y\sqrt{2019}}{y-z\sqrt{2019}}\) là số hữu tỉ và \(x^2+y^2+z^2\) là số nguyên tố.
Cho x, y, z là các số hữu tỉ thỏa mãn \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{z}\)
Chứng minh rằng \(\sqrt{x^2+y^2+z^2}\) là số hữu tỉ
Các idol dô đây lẹ
Cho x, y, z là các số thực dương và thỏa mãn: x+y+z=xyz. Tìm GTLN của biểu thức: \(P=\dfrac{1}{\sqrt{1+x^2}}+\dfrac{1}{\sqrt{1+y^2}}+\dfrac{1}{\sqrt{1+z^2}}\)
Cho x, y, z là các số thực dương và thỏa mãn: x+y+z=xyz. Tìm GTLN của biểu thức: \(P=\dfrac{1}{\sqrt{1+x^2}}+\dfrac{1}{\sqrt{1+y^2}}+\dfrac{1}{\sqrt{1+z^2}}\)
Cho x, y, z là các số hữu tỉ khác 0 thoả mãn x+y=z
Cmr: \(A=\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}}\) là một số hữu tỉ.
a) Tìm cặp số x,y nguyên dương thỏa mãn \(x^2+y^2\left(x-y+1\right)-\left(x-1\right)y=22\)
b) Tìm các cặp số x,y,z nguyên dương thỏa mãn \(\dfrac{xy+yz+zx}{x+y+z}=4\)