$x,y,z$ có thêm điều kiện nguyên/ nguyên dương gì không bạn?
$x,y,z$ có thêm điều kiện nguyên/ nguyên dương gì không bạn?
Giải hệ phương trình sau: \(\left\{{}\begin{matrix}\dfrac{xyz}{x+y}=2\\\dfrac{xyz}{y+z}=1\dfrac{1}{5}\\\dfrac{xyz}{x+z}=1\dfrac{1}{2}\end{matrix}\right.\)
Giai he phuong trinh:
a) \(\left\{{}\begin{matrix}5x+3y=31\\\sqrt{\dfrac{x+2}{y-3}}+\sqrt{\dfrac{y-3}{x+2}}=2\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\dfrac{x}{y}-\dfrac{x}{y+12}=1\\\dfrac{x}{y-12}-\dfrac{x}{y}=2\end{matrix}\right.\)
giải hệ sau bằng phương pháp thế
a)\(\left\{{}\begin{matrix}2x-y=4\\x+5y=3\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}-2x+3y=-1\\x+2y=3\end{matrix}\right.\)
giải hệ sau:
a)\(\left\{{}\begin{matrix}x+y=-1\\2x+y=1\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{5}\\\dfrac{3}{x}+\dfrac{4}{y}=2\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}2\dfrac{5}{x-1}+\dfrac{3}{3y-2}=1\\\dfrac{2}{2x-1}+\dfrac{1}{3y-2}=1\end{matrix}\right.\)
Giải hệ phương trình
a. \(\left\{{}\begin{matrix}\dfrac{1}{2}\left(x+2\right)\left(y+3\right)-\dfrac{1}{2}xy=50\\\dfrac{1}{2}xy-\dfrac{1}{2}\left(x-2\right)\left(y-2\right)=32\end{matrix}\right.\)
b. \(\left\{{}\begin{matrix}\dfrac{3x+5}{x+1}-\dfrac{2}{y+4}=4\\\dfrac{2x}{x+1}-\dfrac{5y+9}{y+4}=9\end{matrix}\right.\)
c. \(\left\{{}\begin{matrix}x^2+y^2-2x-2y-23=0\\x-3y-3=0\end{matrix}\right.\)
d.\(\left\{{}\begin{matrix}\left(x-y\right)^2-3x-3y=4\\2x+y=3\end{matrix}\right.\)
1. giải hệ phương trình \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=2\\\dfrac{2}{xy}-\dfrac{1}{z^2}=4\end{matrix}\right.\)
2. cho hpt \(\left\{{}\begin{matrix}2x+3y=3a\\ax-y=2\end{matrix}\right.\) (a là tham số) tìm nghiệm duy nhất của hpt thỏa mãn \(2x+y^2=1\)
3. cho hpt \(\left\{{}\begin{matrix}2x+y=m\\3x-2y=5\end{matrix}\right.\) tìm nghiệm duy nhất của hpt thỏa mãn x<0; y<0
4. cho hpt \(\left\{{}\begin{matrix}y-16x=m\\m^2-y=-4\end{matrix}\right.\) tìm m để hpt có nghiệm nguyên
giải hệ phương trình:
a)\(\left\{{}\begin{matrix}\dfrac{x+1}{x-1}+\dfrac{3y}{y+2}=7\\\dfrac{2}{x-1}-\dfrac{5}{y+2}=4\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}2\left(x^2-2x\right)+\sqrt{y+1}=0\\3\left(x^2-2x\right)-2\sqrt{y+1}=-7\end{matrix}\right.\)
1, \(\left\{{}\begin{matrix}x^3+2y^2-4y+29=0\\x^2+x^2y^2-18y=0\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}x^3+2y^2-4y+10=0\\x^2+x^2y^2-16y+12=0\end{matrix}\right.\)
3, \(\left\{{}\begin{matrix}x,y>0\\x+y=7\\\dfrac{9}{x}+\dfrac{16}{y}=7\end{matrix}\right.\)
4, \(\left\{{}\begin{matrix}x,y>0\\x+y=4\\\dfrac{4}{x}+\dfrac{9}{y}\le4\end{matrix}\right.\)
5, \(\left\{{}\begin{matrix}x^3+y^2=\dfrac{211}{27}\\x^2+y^2+xy-3x-4y+4=0\end{matrix}\right.\)
6, \(\left\{{}\begin{matrix}x^4+81y^2=697\\x^2+9y^2+3xy-9x-36y+36=0\end{matrix}\right.\)
Giải các hệ phương trình sau:
a) \( \left\{{}\begin{matrix}x\sqrt{5}-\left(1+\sqrt{3}\right)y=1\\\left(1-\sqrt{3}\right)x+y\sqrt{5}=1\end{matrix}\right.;\)
b) \(\left\{{}\begin{matrix}\dfrac{2x}{x+1}+\dfrac{y}{y+1}=\sqrt{2}\\\dfrac{x}{x+1}+\dfrac{3y}{y+1}=-1\end{matrix}\right..\)
Giải các hệ phương trình :
1) \(\left\{{}\begin{matrix}2x+3y=5\\4x+6y=10\end{matrix}\right.\) 2) \(\left\{{}\begin{matrix}\dfrac{3x}{x+1}-\dfrac{2}{y+4}=4\\\dfrac{2x}{x+1}-\dfrac{5}{y+4}=9\end{matrix}\right.\)