1) \(\sqrt{\sqrt{5}-\sqrt{3x}}\) xát định \(\Leftrightarrow\) \(\left\{{}\begin{matrix}3x\ge0\\\sqrt{5}-\sqrt{3x}\ge0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x\ge0\\\sqrt{3x}\le\sqrt{5}\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x\ge0\\3x\le5\end{matrix}\right.\)\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x\ge0\\x\le\dfrac{5}{3}\end{matrix}\right.\) \(\Rightarrow\) \(0\le x\le\dfrac{5}{3}\)
2) \(\sqrt{\sqrt{6x}-4x}\) xát định \(\Leftrightarrow\) \(\left\{{}\begin{matrix}6x\ge0\\\sqrt{6x}-4x\ge0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x\ge0\\x\le\dfrac{3}{8}\end{matrix}\right.\) \(\Leftrightarrow\) \(0\le x\le\dfrac{3}{8}\)
3) ta có : \(\left(x-6\right)^6\ge0\forall x\) \(\Rightarrow\) \(\sqrt{\left(x-6\right)^6}\) được xát định \(\forall x\)
4) \(2-4\sqrt{5x+8}\) xát định \(\Leftrightarrow\) \(5x+8\ge0\) \(\Leftrightarrow\) \(5x\ge-8\) \(\Leftrightarrow\) \(x\ge\dfrac{-8}{5}\)
5) \(\sqrt{\dfrac{-2\sqrt{6}+\sqrt{23}}{-x+5}}\) xát định \(\Leftrightarrow\) \(\dfrac{-2\sqrt{6}+\sqrt{23}}{-x+5}>0\)
mà ta có \(-2\sqrt{6}+\sqrt{23}< 0\) \(\Rightarrow\) để \(\dfrac{-2\sqrt{6}+\sqrt{23}}{-x+5}>0\)
\(\Leftrightarrow\) \(-x+5< 0\) \(\Leftrightarrow\) \(x>5\) (và \(x\ne5\) )
6) \(\sqrt{\dfrac{2\sqrt{15}-\sqrt{59}}{x-7}}\) xát định \(\Leftrightarrow\) \(\dfrac{2\sqrt{15}-\sqrt{59}}{x-7}>0\)
mà \(2\sqrt{15}-\sqrt{59}>0\) \(\Rightarrow\) để \(\dfrac{2\sqrt{15}-\sqrt{59}}{x-7}>0\)
thì \(x-7>0\) \(\Leftrightarrow\) \(x>7\) (và \(x\ne7\) )