tìm số tự nhiên m thỏa mãn đồng thời cả 2 ptrình sau:
a, \(4\left(n+1\right)+3n-6< 19\)
b, \(\left(n-3\right)^2-\left(n+4\right)\left(n-4\right)\le43\)
Với giá trị nào của m thì biểu thức:
a,\(\dfrac{m-2}{4}+\dfrac{3m+1}{3}\)giá trị âm
b, \(\dfrac{m-4}{6m+9}\)có giá trị dương
c,\(\dfrac{2m-3}{2m+3}+\dfrac{2m+3}{2m-3}\) có giá trị âm
d, \(\dfrac{-m+1}{m+8}+\dfrac{m-1}{m+3}\) có giá trị dương
e,\(\dfrac{\left(m+1\right)\left(m-5\right)}{2}\)
bài 1:
a) 4n+4+3n-6<19
<=> 7n-2<19
<=> 7n<21 <=> n< 3
b) n\(^2\) - 6n + 9 - n\(^2\) + 16\(\leq\)43
-6n+25\(\leq\)43
-6n\(\leq\)18
n\(\geq\)-3
câu c
\(\Leftrightarrow\dfrac{2m-3}{2m+3}+\dfrac{2m+3}{2m-3}< 0\Leftrightarrow\dfrac{\left(2m-3\right)\left(2m-3\right)}{\left(2m+3\right)\left(2m-3\right)}+\dfrac{\left(2m+3\right)\left(2m+3\right)}{\left(2m-3\right)\left(2m+3\right)}< 0\)
\(\Leftrightarrow\dfrac{\left(2m-3\right)^2+\left(2m+3\right)^2}{\left(2m+3\right)\left(2m-3\right)}< 0\)
có
\(\left(2m-3\right)^2+\left(2m+3\right)^2>0\forall m\)
\(\Rightarrow\left(2m+3\right)\left(2m-3\right)< 0\Leftrightarrow\dfrac{-3}{2}< m< \dfrac{3}{2}\)