Tìm các số tự nhiên a,b sao cho (2016a+3b+1).(2016a+2016a+b)=225
Cho hàm số \(y=f\left(x\right)=ax^2+bx+1\)
a) Biết f(1) = 1 ; f(-1) = 3 . Tìm a,b
b) với a,b tìm được ở câu a . Chứng minh rằng với mọi số tự nhiên n,n >1 thì phân số \(\dfrac{n}{f\left(n\right)}\) tối giản
Cho các số nguyên dương a,b,c,d và \(\frac{a}{b}=\frac{c}{d}\)
Chứng minh rằng: \(\frac{\left(a^{2016}+b^{2016}\right)^{2017}}{\left(c^{2016}+d^{2016}\right)^{2017}}=\frac{\left(a^{2017}-b^{2017}\right)^{2016}}{\left(c^{2017}-d^{2017}\right)^{2016}}\)
Câu 1 :
Tìm x biết : \(\left|2017-x\right|+\left|2018-x\right|+\left|2019-x\right|=2\)
Câu 2:
Cho các số nguyên dương a+b+c=2016. Chứng minh gtri biểu thức sau không phai la một số nguyên : A= \(\dfrac{a}{2016-c}+\dfrac{b}{2016-a}+\dfrac{c}{2016-b}\)
Tìm x biết: \(\left(x-2015\right)^{2014}+\left(x-2016\right)^{2016}=1\)
Tìm x biết: \(\left|x-2015\right|^{2016}+\left|x-2016\right|^{2015}=1\)
Tìm x biết: \(\left|x-2015\right|^{2016}+\left|x-2016\right|^{2015}=1\)
a) Tìm tập hợp các số nguyên x, biết rằng\(4\dfrac{5}{9}:2\dfrac{5}{18}-7< x< \left(3\dfrac{1}{5}:3,2+4,5.1\dfrac{31}{45}\right):\left(-21\dfrac{1}{2}\right)\)
b) tìm x, biết \(\left|x+\dfrac{1}{2}\right|+\left|x+\dfrac{1}{6}\right|+\left|x+\dfrac{1}{12}\right|+\left|x+\dfrac{1}{20}\right|+....+\left|x+\dfrac{1}{110}\right|-11x\)
c)Tính gt biểu thức \(C=2x^3-5y^3+2015\) tại x,y thỏa mãn \(\left|x-1\right|+\left(y+2\right)^{20}=0\)
Cho A=\(\left(\dfrac{1}{2}-1\right).\left(\dfrac{1}{3}-1\right).\left(\dfrac{1}{4}-1\right)...\left(\dfrac{1}{2015}-1\right).\left(\dfrac{1}{2016}-1\right).\left(\dfrac{1}{2017}-1\right)\)
B=\(\left(-1\dfrac{1}{2}\right).\left(-1\dfrac{1}{3}\right).\left(-1\dfrac{1}{4}\right)...\left(-1\dfrac{1}{2015}\right).\left(-1\dfrac{1}{2016}\right).\left(-1\dfrac{1}{2017}\right)\)
Tính M=A.B