Ta có :
\(2x^2+\dfrac{1}{x^2}+\dfrac{y^2}{4}=4\)
\(\Rightarrow\left(x^2+\dfrac{1}{x^2}-2\right)+\left(x^2+\dfrac{y^2}{4}-xy\right)=2-xy\)
\(\Rightarrow\left(x-\dfrac{1}{x}\right)^2+\left(x-\dfrac{y}{2}\right)^2=2-xy\)
Ta có:
\(\left(x-\dfrac{1}{x}\right)^2\ge0\forall x\)
\(\left(x-\dfrac{y}{2}\right)^2\ge0\forall x,y\)
\(\Rightarrow\left(x-\dfrac{1}{x}\right)^2+\left(x-\dfrac{y}{2}\right)^2\ge0\forall x,y\)
\(\Rightarrow2-xy\ge0\forall x,y\)
\(\Rightarrow xy\le2\)
Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}x-\dfrac{1}{x}=0\\x-\dfrac{y}{2}=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{x}\\x=\dfrac{y}{2}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x^2=1\\y=2x\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\\\left[{}\begin{matrix}y=2\\y=-2\end{matrix}\right.\end{matrix}\right.\)
Vậy (x;y) nguyên thỏa mãn là : (1;2);(-1;-2)