a)
\(\dfrac{13}{x-1}\in Z\\ \Rightarrow\left(x-1\right)\inƯ\left(13\right)\\ \Rightarrow\left(x-1\right)\in\left\{1;-1;13;-13\right\}\\ \Rightarrow x\in\left\{2;0;14;-12\right\}\)
b)
\(\dfrac{x+3}{x-2}=\dfrac{x-2+5}{x-2}=\dfrac{x-2}{x-2}+\dfrac{5}{x-2}=1+\dfrac{5}{x-2}\\ 1+\dfrac{5}{x-2}\in Z\\ \Rightarrow\dfrac{5}{x-2}\in Z\\ \Rightarrow\left(x-2\right)\inƯ\left(5\right)\\ \Rightarrow\left(x-2\right)\in\left\{1;-1;5;-5\right\}\\ \Rightarrow x\in\left\{3;1;7;-3\right\}\)
tham khảo
https://olm.vn/hoi-dap/detail/99049659825.html
a) Để phân số \(\dfrac{13}{x-1}\) là số nguyên thì \(13⋮x-1\)
\(\Leftrightarrow x-1\inƯ\left(13\right)\)
\(\Leftrightarrow x-1\in\left\{1;-1;13;-13\right\}\)
hay \(x\in\left\{2;0;14;-12\right\}\)
Vậy: Để phân số \(\dfrac{13}{x-1}\) là số nguyên thì \(x\in\left\{2;0;14;-12\right\}\)
b) Để phân số \(\dfrac{x+3}{x-2}\) là số nguyên thì \(x+3⋮x-2\)
\(\Leftrightarrow x-2+5⋮x-2\)
mà \(x-2⋮x-2\)
nên \(5⋮x-2\)
\(\Leftrightarrow x-2\inƯ\left(5\right)\)
\(\Leftrightarrow x-2\in\left\{1;-1;5;-5\right\}\)
hay \(x\in\left\{3;1;7;-3\right\}\)
Vậy: Để phân số \(\dfrac{x+3}{x-2}\) là số nguyên thì \(x\in\left\{3;1;7;-3\right\}\)