\(2n+7⋮n+1\)
\(\Rightarrow2n+2+5⋮n+1\)
\(\Rightarrow2\left(n+1\right)+5⋮n+1\)
Vì \(2\left(n+1\right)⋮n+1\) nên để \(2\left(n+1\right)+5⋮n+1\) thì \(5⋮n+1\)
\(\Rightarrow n+1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
n + 1 | 1 | -1 | 5 | -5 |
n | 0 | -2 | 4 | -6 |
Vậy n = {0;-2;4;-6}
\(2n+9⋮n-3\)
\(\Rightarrow2n-6+15⋮n-3\)
\(\Rightarrow2\left(n-3\right)+15⋮n-3\)
Vì \(2\left(n-3\right)⋮n-3\) nên để \(2\left(n-3\right)+15⋮n-3\) thì \(15⋮n-3\)
\(\Rightarrow n-3\inƯ\left(15\right)=\left\{\pm1;\pm3;\pm5;\pm15\right\}\)
n - 3 | 1 | -1 | 3 | -3 | 5 | -5 | 15 | -15 |
n | 4 | 2 | 6 | 0 | 8 | -2 | 18 | -12 |
Vậy n = {4;2;6;0;8;-2;18;-12}