Gọi đa thức \(x^4+ax^2+1\) là \(f\left(x\right)\). Theo bài ra ta có phương trình:
\(f\left(-1\right)=\left(-1\right)^4+a\left(-1\right)^2+1=0\)
<=>\(f\left(-1\right)=1+a+1=0\)
\(\Leftrightarrow f\left(-1\right)=a=-2\)
\(\Rightarrow a=-2\)
Vậy \(a=-2\)
b)
Gọi đa thức \(3x^2+ax+27\) là \(f\left(x\right)\), \(Q\left(x\right)\) là thương của \(f\left(x\right)\) khi chia cho \(x+5\) được dư là \(2\), theo bài ra ta có phương trình:
\(f\left(x\right)=3x^2+ax+27=\left(x+5\right).Q\left(x\right)+2\) (*)
\(x=-5\) là nghiệm của \(x+5\), thay nghiệm x=-5 vào (*), ta được:
\(f\left(-5\right)=3.\left(-5\right)^2+a\left(-5\right)+27=\left(-5+5\right).Q\left(x\right)+2\)
<=>\(f\left(-5\right)=75-5a+27=2\)
<=>\(f\left(-5\right)=-5a=-100\)
<=>\(f\left(-5\right)=a=20\)
=> \(a=20\)
Vậy \(a=20\)
Chúc bạn học tốt! Cứu bạn rồi đó nghen! ^^