Lời giải:
PT \(\Leftrightarrow x^4(x^2-1)+2x^2(x+1)=y^2\)
\(\Leftrightarrow x^4(x-1)(x+1)+2x^2(x+1)=y^2\)
\(\Leftrightarrow x^2(x+1)(x^3-x^2+2)=y^2\)
\(\Leftrightarrow x^2(x+1)[(x^3+1)-(x^2-1)]=y^2\)
\(\Leftrightarrow x^2(x+1)(x+1)(x^2-x+1-x+1)=y^2\)
\(\Leftrightarrow x^2(x+1)^2(x^2-2x+2)=y^2\)
Do đó $x^2-2x+2=t^2$ ( \(t\in\mathbb{N}^*)\)
\(\Leftrightarrow (x-1)^2+1=t^2\Rightarrow (t-x+1)(t+x-1)=1\)
Xét TH ta dễ dàng suy ra \(x=1\)
Thay vào pt ban đầu suy ra \(y^2=4\Rightarrow y=2\) (do $y$ dương)
Vậy $(x,y)=(1,2)$