Do n + 3 và n + 120 đều là số chính phương nên
\(\begin{cases}n+3=a^2\\n+120=b^2\end{cases}\) \(\left(a;b\in N;a>1;b>11\right)\)
=> (n + 120) - (n + 3) = a2 - b2
=> a2 - b2 = n + 120 - n - 3
=> (a - b).(a + b) = 117
=> a - b và a + b cùng lẻ mà a - b < a + b; a + b > 12
=> \(\begin{cases}a-b=1\\a+b=117\end{cases}\) hoặc \(\begin{cases}a-b=3\\a+b=39\end{cases}\) hoặc \(\begin{cases}a-b=9\\a+b=13\end{cases}\)
Các cặp giá trị (a;b) tương ứng là: (58;59) ; (18;21) ; (2;11)
Các giá trị n tương ứng là: 3361; 321; 1
Vậy \(n\in\left\{3361;321;1\right\}\)