Tìm Min \(T=\sqrt{\left(x-3\right)^2+\left(y-4\right)^2}+\sqrt{x^2+y^2}\)
a) Giả sử phương trình bậc 2: \(x^2-2\left(m-1\right)x-m^3+\left(m+1\right)^2=0\) có 2 nghiệm \(x_1,x_2\)thỏa mãn \(x_1+x_2\le4\). Tìm Max, Min của \(P=x^3_1+x^3_2+x_1x_2\left(3x_1+3x_2+8\right)\)
b) Cho hàm \(y=f\left(x\right)=2\left(m-1\right)x+\dfrac{m\left(x-2\right)}{\left|x-2\right|}\). Tìm tất cả các giá trị của \(m\) để \(f\left(x\right)< 0,\forall x\in\left[0;1\right]\)
Cho x, y, z đôi một khác nhau thỏa mãn \(\left(x+z\right)\left(y+z\right)=1\). Tìm Min
\(M=\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{\left(x+z\right)^2}+\dfrac{1}{\left(y+z\right)^2}\)
Cho hàm số \(y=f\left(x\right)=x^2-4x+3\). Tìm m nguyên sao cho \(f^2\left(\left|x\right|\right)+\left(m-2\right)f\left(\left|x\right|\right)+m-3=0\) có 6 nghiệm phân biệt
Giải hệ phương trình: \(\left\{{}\begin{matrix}\left(x+y\right)\left(2x-3\right)+1=0\\x^2+y^2+xy+\dfrac{3}{4\left(x+y\right)^2}=\dfrac{7}{4}\end{matrix}\right.\)
Cho phương trình:
\(-x^2+2x+4\sqrt{\left(3-x\right)\left(x+1\right)}=m-2\)
Tìm m để pt có nghiệm
Giải pt
\(1)4x^2+\sqrt{3x+1}+5=13x\)
\(2)7x^2-13x+8=2x^2.\sqrt[3]{x\left(1+3x-3x^2\right)}\)
\(3)x^3-4x^2-5x+6=\sqrt[3]{7x^2+9x-4}\)
\(4)x^3-5x^2+4x-5=\left(1-2x\right)\sqrt[3]{6x^2-2x+7}\)
\(5)8x^2-13x+7=\left(1+\dfrac{1}{x}\right)\sqrt[3]{3x^2-2}\)
tìm GTNN của biểu thức: A= \(\left|x-3\right|+\left|x-1\right|+\left|x+1\right|+\left|x+3\right|\)
\(\left(\frac{x}{x+1}\right)^4-\left(\frac{x}{x+1}\right)^2=\frac{3}{2}\)