Thêm điều kiện \(a,b>0\)
\(\dfrac{a+b}{\sqrt{ab}}+\dfrac{\sqrt{ab}}{a+b}=\dfrac{3\left(a+b\right)}{4\sqrt{ab}}+\left(\dfrac{\left(a+b\right)}{4\sqrt{ab}}+\dfrac{\sqrt{ab}}{a+b}\right)=\dfrac{3.2}{4}+1=\dfrac{5}{2}\)
Thêm điều kiện \(a,b>0\)
\(\dfrac{a+b}{\sqrt{ab}}+\dfrac{\sqrt{ab}}{a+b}=\dfrac{3\left(a+b\right)}{4\sqrt{ab}}+\left(\dfrac{\left(a+b\right)}{4\sqrt{ab}}+\dfrac{\sqrt{ab}}{a+b}\right)=\dfrac{3.2}{4}+1=\dfrac{5}{2}\)
cho a,b là 2 số dương thỏa mãn : \(\sqrt{ab}=\dfrac{a+b}{a-b}\) . tìm min của bt : \(P=ab+\dfrac{a-b}{\sqrt{ab}}\)
Cho \(P=\left(\dfrac{3\sqrt{a}}{a+\sqrt{ab}+b}-\dfrac{3a}{a\sqrt{a}-b\sqrt{b}}+\dfrac{1}{\sqrt{a}-\sqrt{b}}\right):\left(\dfrac{\left(a-1\right)\left(\sqrt{a}-\sqrt{b}\right)}{2a+2\sqrt{ab}+2b}\right)\)
Tìm \(a\in Z\) để \(P\in Z\)
Bài 1. Cho a,b>0 tm a+b=1
Tìm Min P= \(\dfrac{2}{ab}+\dfrac{1}{a^2+b^2}+\dfrac{a^4+b^4}{2}\)
Bài 2, Cho x,y>0 tm x+y = 4/3
Tìm Min A= \(\dfrac{2}{x^2+y^2}+\dfrac{2}{xy}+5xy\)
Bài 3. Cho a,b,c là 3 cạnh tam giác. Tìm Min P= \(\dfrac{4a}{b+c-a}+\dfrac{9b}{a+c-b}+\dfrac{16c}{a+b-c}\)
Bài 4. Cho a,b,c >1. Tìm Min P= \(\dfrac{a}{\sqrt{b}-1}+\dfrac{b}{\sqrt{c}-1}+\dfrac{c}{\sqrt{a}-1}\)
@Akai Haruma Chị giúp e bài này đc k chị, tại e sắp thi rồi chị!! E cảm ơn
Rút gọn biểu thức sau:
a) A= \(\dfrac{\sqrt{a}+\sqrt{b}-1}{a+\sqrt{ab}}+\dfrac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}\left(\dfrac{\sqrt{b}}{a-\sqrt{ab}}-\dfrac{\sqrt{b}}{a+\sqrt{ab}}\right)\)
b) B=\(\left(\dfrac{2}{\sqrt{a}-\sqrt{b}}-\dfrac{2\sqrt{a}}{a\sqrt{a}+b\sqrt{b}}.\dfrac{a\sqrt{ab}+b}{\sqrt{a}-\sqrt{b}}\right):4\sqrt{ab}\)
giúp mình với ạ, mk cần gấp lắm
Chứng minh :
a) \(\dfrac{3x}{2y}+\dfrac{3}{2}\sqrt{\dfrac{3}{5}}-\sqrt{\dfrac{3}{4}}=\dfrac{3\sqrt{x}}{2}.\left(\dfrac{\sqrt{x}}{y}+\sqrt{\dfrac{3}{5x}}-\sqrt{\dfrac{1}{3}}\right)\)
b)\(ab.\sqrt{1+\dfrac{1}{a^2b^2}}-\sqrt{a^2b^2+1}=0\) , với a ; b > 0
c) \(\left(\dfrac{3}{a}\sqrt{\dfrac{a^3}{b}}-\dfrac{1}{2}\sqrt{\dfrac{4}{ab}}-2\sqrt{\dfrac{b}{a}}\right):\sqrt{\dfrac{1}{ab}}=3a-2b-1\) với a, b >0
d)\(\left(\sqrt{\dfrac{16a}{b}}+3\sqrt{4ab}-a\sqrt{\dfrac{36b}{a}}+2\sqrt{ab}\right):\left(\sqrt{ab}+\dfrac{a}{b}\sqrt{\dfrac{b}{a}}+\sqrt{\dfrac{a}{b}}\right)=2\) Với a, b >0
Mọi người giúp tớ với ạ !!!!!! Mình thật sự cần gấp vào ngày mai !!!!
Bài 1
a. Tìm điều kiện để căn thức bậc hai có nghĩa \(\sqrt{\dfrac{1}{2-x}}\)
b. \(\sqrt[3]{125}.\sqrt[3]{-216}-\sqrt[3]{512}.\sqrt[3]{\dfrac{1}{8}}\)
* Chứng minh
\(\dfrac{\sqrt{ab}-b}{b}-\sqrt{\dfrac{a}{b}}\) < 0 với a ≥ 0, b≥0
rút gọn
\(\dfrac{\sqrt{21}-\sqrt{3}}{\sqrt{7}-1}-\dfrac{\sqrt{15}-\sqrt{3}}{1-\sqrt{5}}\)
(\(\left(\dfrac{\sqrt{b}}{a-\sqrt{ab}}-\dfrac{\sqrt{a}}{\sqrt{ab}-b}\right)\left(a\sqrt{b}-b\sqrt{a}\right)\)
(\(\dfrac{2\sqrt{x}}{\sqrt{x}-3}+\dfrac{\sqrt{x}}{\sqrt{x}+3}-\dfrac{3x+3}{x-9}\)):(\(\dfrac{2\sqrt{x}-2}{\sqrt{x}+3}-1\))
a) Rút gọn biểu thức
b) Tìm x để Q<\(\dfrac{-1}{2}\)
c) Tìm min Q
Rút gọn: \(\left(\dfrac{\sqrt{b}}{a-\sqrt{ab}}-\dfrac{\sqrt{a}}{\sqrt{ab}-b}\right).\left(a\sqrt{b}-b\sqrt{a}\right)\)