Cho \(x=\sqrt{\dfrac{1}{2\sqrt{3}-2}-\dfrac{3}{2.\left(\sqrt{3}+1\right)}}\). Tính: \(A=\dfrac{4.\left(x+1\right).x^{2013}-2.x^{2012}+2x+1}{2x^2+3x}\)
giải hệ pt:
(1) \(\left\{{}\begin{matrix}x^2-3xy+2y^2=0\\3x+y=6\end{matrix}\right.\)
(2)\(\left\{{}\begin{matrix}\dfrac{x-1}{2x+1}-\dfrac{y-2}{y+2}=1\\\dfrac{3x-3}{2x+1}+\dfrac{2y-4}{y+2}=3\end{matrix}\right.\)
(3)\(\left\{{}\begin{matrix}2\left(x+y\right)+\sqrt{x+1}=4\\x+y-3\sqrt{x+1}=-5\end{matrix}\right.\)
Giải phương trình:
1, \(\left(x+3\right)\left(3x^4+8x^2+12x+21\right)=5\left(x^2+1\right)^3\)
2, \(3\left(x^2+2x-1\right)^2-2\left(x^2+3x-1\right)^2+5x^2=0\)
3, \(\dfrac{x^2+x+1}{x+1}+\dfrac{x^2+2x+2}{x+2}-\dfrac{x^2+3x+3}{x+3}-\dfrac{x^2+4x+4}{x+4}=0\)
4, \(\left(\dfrac{x+6}{x-6}\right)\left(\dfrac{x+4}{x-4}\right)^2+\left(\dfrac{x-6}{x+6}\right)\left(\dfrac{x+9}{x-9}\right)^2=2.\dfrac{x^2+36}{x^2-36}\)
Tìm GTLN của \(P=\dfrac{2x^2+6\sqrt{\left(x^2+1\right)\left(x-2\right)+5}}{x^2+3x-4}\)
Giải ptrinh :
\(\dfrac{x^2}{\sqrt{3x-2}}-\sqrt{3x-2}=1-x\)
\(\sqrt{x+1}+2\left(x+1\right)=x-1+\sqrt{1-x}+3\sqrt{1-x^2}\)
\(3x^2+3x+2=\left(x+6\right)\sqrt{3x^2-2x-3}\)
Giải các phương trình sau:
1. \(\sqrt{x^2-\dfrac{1}{4}+\sqrt{x^2+x+\dfrac{1}{4}}}=\dfrac{1}{2}\left(2x^3+x^2+2x+1\right)\)
2. \(x^2+4x+7=\left(x+4\right)\sqrt{x^2+7}\)
3. \(\sqrt{x-1}+\sqrt{x^3+x^2+x+1}=1+\sqrt{x^4-1}\)
4. \(\sqrt{x^2-3x+2}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{x^2+2x-3}\)
5. \(x=\left(\sqrt{x}+2\right)\left(1-\sqrt{1-\sqrt{x}}\right)\)
6. \(2\sqrt[3]{2x-1}=x^3+1\)
7. \(\sqrt{x-\dfrac{1}{x}}+\sqrt{1-\dfrac{1}{x}}=x\)
1) Rút gọn biểu thức
P=\(\left(\dfrac{3x-6\sqrt{x}}{x\sqrt{x}-2x}-\dfrac{1}{2-\sqrt{x}}+\dfrac{\sqrt{x}-3}{\sqrt{x}}\right).\left(1-\dfrac{\sqrt{x}-3}{\sqrt{x}-2}\right)\)
Giải phương trình:
1. \(\sqrt{2x^2+4x+7}=x^4+4x^3+3x^2-2x-7\)
2. \(\dfrac{4}{x}+\sqrt{x-\dfrac{1}{x}}=x+\sqrt{2x-\dfrac{5}{x}}\)
3. \(\dfrac{6-2x}{\sqrt{5-x}}+\dfrac{6+2x}{\sqrt{5+x}}=\dfrac{8}{3}\)
4. \(x^2+1-\left(x+1\right)\sqrt{x^2-2x+3}=0\)
5. \(2\sqrt{2x+4}+4\sqrt{2-x}=\sqrt{9x^2+16}\)
6. \(\left(2x+7\right)\sqrt{2x+7}=x^2+9x+7\)
tính giá trị của biểu thức:
\(P=\left(2x^5+2x^4-x^3-1\right)^{2016}+\left(\sqrt{2x+2x-3x+3x+3}\right)^3+\dfrac{\left(2x^3+2x^2-x-3\right)^{2017}}{2x^4+2x^3-x^2-3^{2017}}\)
khi \(x=\sqrt{\dfrac{2-\sqrt{3}}{2}}\)