Lời giải:
Để làm đồng biến trên $(0;+\infty)$ thì:
$y'=3x^2-2(2m+1)x+(m^2+2m)>0$ với mọi $x\in (0;+\infty)$
$\Leftrightarrow 3x(x-m)-(m+2)(x-m)>0, \forall x\in (0;+\infty)$
$\Leftrightarrow (3x-m-2)(x-m)>0$, $\forall x\in (0;+\infty)$
\(\Leftrightarrow \left[\begin{matrix} \left\{\begin{matrix} x>m\\ x> \frac{m+2}{3}\end{matrix}\right.\\ \left\{\begin{matrix} x< \frac{m+2}{3}\\ x< m\end{matrix}\right.\end{matrix}\right.\), $\forall x\in (0;+\infty)$
$\Leftrightarrow \frac{m+2}{3}<min (x)$
$\Leftrightarrow m< -2$
Đ=R
\(y'=3x^2-2\left(2m+1\right)x+\left(m^2+2m\right)\)
+ ) 3 > 0 (thỏa mãn )
\(\Delta'=\left(2m+1\right)^2-3\left(m^2-2m\right)\)
\(=4m^2-4m+1-3m^2+6m\)
\(=m^2+2m+1=\left(m+1\right)^2\)
\(\left[{}\begin{matrix}x_1=\dfrac{2m-1+m-1}{3}=\dfrac{3m-2}{3}\\x_2=\dfrac{2m-1+m+1}{3}=\dfrac{3m}{3}=m\end{matrix}\right.\)
BBT:
x \(-\infty\) |\(\dfrac{3m-2}{3}\)
y' + 0 - 0 +
/ \ /
y / \ /
=> m\(\le0\)