từ hpt đã cho, ta suy ra pt:
\(x^2-\left(2m-3\right)x+6=2x^2+x+\left(m-5\right)\)
** tới đây bạn sắp xếp lại 1 chút, sau đó tính delta**
pt có nghiệm \(\Leftrightarrow\Delta\ge0\) <=> ....bla...bla... tới đây thì dễ rồi
từ hpt đã cho, ta suy ra pt:
\(x^2-\left(2m-3\right)x+6=2x^2+x+\left(m-5\right)\)
** tới đây bạn sắp xếp lại 1 chút, sau đó tính delta**
pt có nghiệm \(\Leftrightarrow\Delta\ge0\) <=> ....bla...bla... tới đây thì dễ rồi
Tìm m để hệ phương trình sau đây có nghiệm:
\(\left\{{}\begin{matrix}x^2-\left(2m-3\right)x+6=0\\2x^2+x+\left(m-5\right)=0\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\left(2m+1\right)x+y=2m-2\\m^2x-y=m^2-3m\end{matrix}\right.\)
Cho hệ phương trình trên. Tìm m €Z để hệ phương trình
có nghiệm (x;y)€Z
Bài 1: Cho hpt \(\left\{{}\begin{matrix}x+2y=m+3\\2x-3y=m\end{matrix}\right.\) ( m là tham số)
a) Giải hệ phương trình m=1
b) Tìm m để hệ phương trình có nghiệm duy nhất thỏa mãn: x + y = 3
(mink đag cần gấp)
Bài 1: Cho hpt \(\left\{{}\begin{matrix}x+2y=m+3\\2x-3y=m\end{matrix}\right.\) ( m là tham số)
a) Giải hệ phương trình m=1
b) Tìm m để hệ phương trình có nghiệm duy nhất thỏa mãn: x + y = 3
(mink đag cần gấp)
giải hệ phương trình
\(\left\{{}\begin{matrix}8\left(x^3-1\right)+6xy^2=y\left(12x^2+y^2\right)\\\left(x^2+y-4x\right)\left(x^2-y^2-2x-5\right)=14\end{matrix}\right.\)
giải hệ phương trình
Gợi ý: a): cộng hệ số; b,c: phương pháp thế
a) \(\left\{{}\begin{matrix}2x-y=3+2m\\mx+y=\left(m+1\right)^2\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x+my=3m\\mx-y=m^2-2\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}x-my=1+m^2\\mx+y=1+m^2\end{matrix}\right.\)
Tìm giá trị của a và b để hệ phương trình \(\left\{{}\begin{matrix}3ax-\left(b+1\right)y=93\\bx+4ay=-3\end{matrix}\right.\) có nghiệm là (x;y)=(1;-5)
Giai he phuong trinh
(I) \(\left\{{}\begin{matrix}x+y=5\\xy=5\end{matrix}\right.\)
(II)\(\left\{{}\begin{matrix}x+\left|y\right|=3\\2x-\left|y\right|=2\end{matrix}\right.\)
(III)\(\left\{{}\begin{matrix}x+\left|y-2\right|=0\\-x+2y=2\end{matrix}\right.\)
Giải hệ phương trình:
\(\left\{{}\begin{matrix}x^3+2y^2+xy^2=2+x-2x^2\\4y^2=\left(\sqrt{y^2+1}+1\right)\left(y^2-x^3+3x-2\right)\end{matrix}\right.\)