Với \(m=0\) hệ có nghiệm \(x=1\)
Với \(m\ne0\)
Xét \(x^2-2x+1-m\le0\) (1)
\(\Delta'=m\Rightarrow\) để (1) có nghiệm thì \(m>0\Rightarrow1-\sqrt{m}\le x\le1+\sqrt{m}\) (3)
Xét \(f\left(x\right)=x^2-2\left(m+1\right)x+m^2+m\le0\) (2)
\(\Delta'=\left(m+1\right)^2-\left(m^2+m\right)=m+1\)
Với \(m>0\Rightarrow\) (2) có nghiệm \(m+1-\sqrt{m+1}\le x\le m+1+\sqrt{m+1}\) (4)
Khi \(m>0\Rightarrow m+1+\sqrt{m+1}>1+\sqrt{m}\)
\(\Rightarrow\) Để (3) giao (4) khác rỗng
\(\Leftrightarrow m+1-\sqrt{m+1}\le1+\sqrt{m}\)
\(\Leftrightarrow m-\sqrt{m}\le\sqrt{m+1}\)
- Với \(0< m\le1\Rightarrow\left\{{}\begin{matrix}VP>0\\VT\le0\end{matrix}\right.\) BPT luôn đúng
- Với \(m>1\) bình phương 2 vế:
\(\Leftrightarrow m^2-2m\sqrt{m}+m\le m+1\)
\(\Leftrightarrow m^2-2m\sqrt{m}-1\le0\)
\(t=\sqrt{m}\Rightarrow t^4-2t^3-1\le0\)
Rất tiếc BPT này ko giải được ^.^
\(x^2-2x+1-m>0\) với mọi x \(\Leftrightarrow\Delta'< 0\Leftrightarrow1-1+m< 0\Leftrightarrow m< 0\)
Vậy để \(x^2-2x+1-m\le0\) với mọi x \(\Leftrightarrow m\ge0\)
Xét \(x^2-\left(2m+2\right)x+m^2+m\)
Để \(x^2-2\left(m+1\right)x+m^2+m>0\Leftrightarrow\Delta'< 0\)
\(\Leftrightarrow m^2+2m+1-m^2-m< 0\Leftrightarrow m< -1\)
Vậy để \(x^2-2\left(m+1\right)x+m^2+m\le0\Leftrightarrow m\ge-1\)
Kết hợp lại ta có \(m\ge0\)