\(x^2-3x-4\le0\Leftrightarrow-1\le x\le4\)
Xét BPT dưới:
\(2mx\ge m+3\)
- Với \(m=0\) ko phải nghiệm
- Với \(m>0\Rightarrow x\ge\frac{m+3}{2m}\)
Để BPT có nghiệm duy nhất \(\Leftrightarrow\frac{m+3}{2m}=4\Rightarrow m+3=8m\Leftrightarrow m=\frac{3}{7}\)
- Với \(m< 0\Rightarrow x\le\frac{m+3}{2m}\)
Để BPT có nghiệm duy nhất \(\Leftrightarrow\frac{m+3}{2m}=-1\Leftrightarrow m=-1\)
Vậy \(\left[{}\begin{matrix}m=\frac{3}{7}\\m=-1\end{matrix}\right.\)