Phát biểu các điều kiện để hàm số đồng biến, nghịch biến. Tìm các khoảng đơn điệu của các hàm số:
\(y= -x^3 + 2x^2 – x – 7\)
\(y=\dfrac{x-5}{1-x}\)
Cho hàm số \(y = 2x^2 + 2mx + m -1\) có đồ thị là \((C_m)\), \(m \)là tham số
a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số khi \(m=1\)
b) Xác định m để hàm số:
- Đồng biến trên khoảng (-1, +∞)
- Có cực trị trên khoảng (-1, +∞)
c) Chứng minh rằng \((C_m)\) luôn cắt trục hoành tại hai điểm phân biệt với mọi \(m\)
Tập hợp tất cả các giá trị thực của tham số m để hs y= \(\dfrac{-1}{3}x^3+x^2+mx-2019\) nghịch biến trên khoảng (0 ; dương vô cùng)
Tìm tất car các giá trị thực của tham số m để hs y= \(\dfrac{m}{3}.x^3-\left(m+1\right).x^2+\left(m-2\right).x-3m\) nghịch biến trên R.
Cho hàm số:
\(f(x)= x^3 – 3mx^2 + 3(2m-1)x + 1\) ( \(m\) là tham số)
a) Xác định \(m\) để hàm số đồng biến trên một tập xác định
b) Với giá trị nào của tham số \(m\), hàm số có một cực đại và một cực tiểu
c) Xác định \(m\) để \(f’’(x)>6x\)
Nêu cách tìm cực đại, cực tiểu của hàm số nhờ đạo hàm. Tìm các cực trị của hàm số \(y = x^4 – 2x^2 + 2\)
Hàm số \(y=\dfrac{2x-5}{x+3}\) đồng biến trên:
\(\mathbb{R}\) \((-\infty,3)\) \((-3,+\infty)\) \(\mathbb{R} \) \ {-3}a) Khảo sát sự biến thiên và vẽ đồ thị hàm số \((C)\) của hàm số
\(f(x) = -x^3+3x^2+9x+2\)
b) Giải bất phương trình \(f’(x-1)>0\)
c) Vẽ phương trình tiếp tuyến của đồ thị \((C)\) tại điểm có hoành độ \(x_0\), biết rằng \(f’’(x_0) = -6\)
a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số
\( f(x)=\dfrac{1}{2}x^4-3x^2+\dfrac{3}{2}\)
b) Viết phương trình tiếp tuyến của đồ thị (C) tại điểm có hoành độ là nghiệm của phương trình \(f’’(x) = 0\)
c) Biện luận theo tham số \(m\) số nghiệm của phương trình: \(x^4 – 6x^2 + 3 = m\)