f(x) = \(-2x^2+x+3\)
Vẽ BBT
Trong khoảng \(\left[-1;\frac{3}{2}\right]\)
Thấy GTLN tại x = 1/4 => y = 25/8
GTNN tại x = -1 => y = 0
f(x) = \(-2x^2+x+3\)
Vẽ BBT
Trong khoảng \(\left[-1;\frac{3}{2}\right]\)
Thấy GTLN tại x = 1/4 => y = 25/8
GTNN tại x = -1 => y = 0
Tìm GTNN của hàm số f(x)= 2x + \(\dfrac{8}{x^2}\) với x \(\ge\) 4
1.Tìm GTLN của BT
P=x^2×(4-2x) với 0《 x《2
2.Tìm GTNN của
P(x)=x/2 +8/x-1 với x>1
3.Tìm GTLN của hs
y=x(6-2x^2) trên đoạn [0;3]
4.Tìm GTNN của hs
f(x)=cănx + 2/x+1 với x》0
Mấy bạn giúp mình nhé mình đang cần gấp lắm thanks nhiều nhiều.
a) Cho \(x\ge2\). GTNN của hàm số \(y=\dfrac{\sqrt{x-2}}{x}\)
b) GTNN của biểu thức \(f\left(x\right)=\dfrac{x}{\sqrt{x-1}}\) với x>1
Tìm GTNN của các hàm số sau:
a) \(f\left(x\right)=5+x+\dfrac{1}{x}\left(x>4\right)\)
b) \(g\left(x\right)=\left(x+2\right)\left(3+\dfrac{1}{x}\right)\left(x>0\right)\)
c) \(h\left(x\right)=\left(x+1\right)^2+\left(\dfrac{x^2}{x+1}+2\right)^2\left(x\ne-1\right)\)
Câu 1 : Xét dấu các biểu thức sau :
a , f(x) = \(\left(2x-1\right)\left(x+3\right)\)
b , f(x)= \(\left(-3x-3\right)\left(x+2\right)\left(x+3\right)\)
c , f(x) = \(\frac{-4}{3x+1}-\frac{3}{2-x}\)
d , f (x) = \(4x^2-1\)
e , f(x)= \(\left(-2x+3\right)\left(x-2\right)\left(x+4\right)\)
f , f(x) = \(\frac{2x+1}{\left(x-1\right)\left(x+2\right)}\)
g , f (x) = \(\frac{3}{2x-1}-\frac{1}{x-2}\)
h , f ( x) = \(\left(4x-1\right)\left(x+2\right)\left(3x-5\right)\left(-2x+7\right)\)
Xét dấu f(x) biết:
1) f(x) = \(\left(3x^2-x-2\right)\left(4x^2-7x-2\right)\)
2) f(x) = \(\frac{2x^2-x-15}{3x-2}\)
3) f(x) = \(\frac{5}{2x-1}+\frac{3}{5-2x}\)
4) f(x) = \(\left(5-2x\right)^2\left(x+2\right)\)
5) f(x) = \(\frac{\left(x-1\right)^2\left(3-2x\right)}{x^2+x-6}\)
BT1: Cho hàm số:
f(x)= x+2x−1
a) Tìm x để vế phải có nghĩa
b) Tính f(7)
c) Tìm x để f(x)= 14
d) Tìm x thuộc Z để f(x) có gt nguyên
e) Tìm x để f(x) >1
BT2 : Tìm x thuộc Z để biểu thức :
a) P= 9-2.|x-3| đạt GTLN
b) Q= |x-2| + |x-8| đạt GTNN
Tìm GTNN của hàm số f(x)=x + 2 - 4\(\sqrt{x-1}\)
tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số f(x) = ( x +3 )( 5 - x ) với -3<= x <=5