\(P=x^2+y^2=xy+16\) \(\Rightarrow2P=2\left(x^2+y^2\right)=2xy+32\)
\(\Rightarrow3\left(x^2+y^2\right)=\left(x+y\right)^2+32\ge32\)
\(\Rightarrow x^2+y^2\ge\frac{32}{3}\Rightarrow P\ge\frac{32}{3}\)
\(P=xy+16\le\frac{x^2+y^2}{2}+16\)
\(\Rightarrow x^2+y^2\le\frac{x^2+y^2}{2}+16\)
\(\Rightarrow\frac{x^2+y^2}{2}\le16\Rightarrow x^2+y^2\le32\)
\(\Rightarrow P\le32\)