\(\sqrt{\left(2011-x\right)^2+\left(x-1\right)^2}\ge\sqrt{\frac{1}{2}\left(2011-x+x-1\right)^2}=1005\sqrt{2}\)
\(\sqrt{\left(2011-x\right)^2+\left(x-1\right)^2}\ge\sqrt{\frac{1}{2}\left(2011-x+x-1\right)^2}=1005\sqrt{2}\)
Tìm GTNN của biểu thức:
\(A=\dfrac{x^2}{x+y}+\dfrac{y^2}{y+z}+\dfrac{z^2}{x+z}\)
Biết\(\left\{{}\begin{matrix}x.y.z>0\\\sqrt{xy}+\sqrt{yz}+\sqrt{zx}=1\end{matrix}\right.\)
Tìm tất cả các giá trị của x để biểu thức B = \(\dfrac{x+\sqrt{x}+4}{\sqrt{x}+1}\left(x\ge0\right)\) đạt GTNN
Hỗ trợ em bài này ạ. Tìm GTLN và GTNN của biểu thức P=\(\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}\)
Bài 2:
Cho biểu thức E= \(\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{\sqrt{x}-1}{\sqrt{x}+1}+4\sqrt{x}\right):\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right)\)
a) Rút gọn E
b) Tìm x để E= 2
c) Tính giá trị của E khi x=\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
cho biểu thức P=\(\left(\dfrac{\sqrt{x}}{\sqrt{x}+2}-\dfrac{4}{x+2\sqrt{x}}\right):\left(1+\dfrac{1}{\sqrt{x}}\right)\) với x>0
1.rút gọn biểu thức P
2.tìm các soosnguyeen x thả mãn P>0
* Cho biểu thức:
A= \(\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\left(\dfrac{1}{1+\sqrt{x}}+\dfrac{2}{x-1}\right)\)
a. Tìm điều kiện của x để biểu thức A có nghĩa
b. Rút gọn biểu thức A
c. Tính các giá trị của x để A>0
\(P\left(x\right)=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)
Tìm x để \(\dfrac{p\left(x\right)}{2020\sqrt{x}}\) đạt GTNN
Cho biểu thức P=\(\left(2-\dfrac{\sqrt{x}-1}{2\sqrt{x}-3}\right):\left(\dfrac{6\sqrt{x}+1}{\left(2\sqrt{x-3}\right)\left(\sqrt{x}+1\right)}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right)\)
a.Rút gọn P
b.Tính giái trị của P khi x=\(\dfrac{3-2\sqrt{2}}{4}\)
Tìm GTNN của biểu thức: P = \(\dfrac{\left(x^3+y^3\right)-\left(x^2+y^2\right)}{\left(x-1\right)\left(y-1\right)}\)