\(B=\left(2-x\right)\left(x+3\right)\)
\(\Leftrightarrow B=2-x^2+6-3x\)
\(\Leftrightarrow B=-x^2-3x+8\)
\(\Leftrightarrow B=-\left(x^2+3x-8\right)\)
\(\Leftrightarrow B=-\left(x^2+3x+\dfrac{9}{4}-\dfrac{41}{4}\right)\)
\(\Leftrightarrow B=-\left[\left(x+\dfrac{3}{2}\right)^2-\dfrac{41}{4}\right]\)
\(\Leftrightarrow B=-\left(x+\dfrac{3}{2}\right)^2+\dfrac{41}{4}\le\dfrac{41}{4}\forall x\)
Dấu " = " xảy ra
\(\Leftrightarrow x+\dfrac{3}{2}=0\Leftrightarrow x=-\dfrac{3}{2}\)
Vậy Max B là : \(\dfrac{41}{4}\Leftrightarrow x=-\dfrac{3}{2}\)
:D