H = x(x+1)(x+2)(x+3)
=x(x+3)(x+1)(x+2)
=(x2+3x)(x2+3x+2)
Đặt t=x2+3x ta có:
t(t+2)=t2-2t+1-1=(t-1)2-1\(\ge1\)
Dấu = khi \(t=1\Rightarrow x^2+3x=1\Rightarrow\)\(x_{1,2}=\frac{-3\pm\sqrt{13}}{2}\)
Ta có: H = x(x+3)(x+1)(x+2) H = (x2+ 3x)(x2 + 3x +2) H = (x2+3x)2 + 2(x2+3x) H = (x2+3x)2 + 2(x2+3x)+1 – 1 H = (x2 + 3x +1)2 – 1 ⇔H ≥ - 1 , Dấu ‘ = ’ xảy ra khi x2 + 3x +1 = 0 ⇔x =-3+căn5 chia 2 Vậy giá trị nhỏ nhất của H là -1 khi x =-3+căn5 chia 2