Biểu thức này ko có GTNN, chỉ có GTLN
Biểu thức này ko có GTNN, chỉ có GTLN
Tìm giá trị lớn nhất của biểu thức:
\(A=\frac{x}{\left(x+2020\right)^2}\)Với \(x>0\)
Tìm giá trị lớn nhất của biểu thức: \(A=\left|x-3\right|.\left(2-\left|x-3\right|\right)\)
Cho ba số x,y,z thỏa mãn 0<x ,y,z =<1 và x+y+z =2.Tìm giá trị nhỏ nhất của biểu thức
A=\(\frac{\left(x-1\right)^2}{z}+\frac{\left(y-1\right)^2}{x}+\frac{\left(z-1\right)^2}{y}\)
1, Cho x,y>0.Cmr :\(\frac{x^2}{y^2}+\frac{y^2}{x^2}+4\ge3\left(\frac{x}{y}+\frac{y}{x}\right)\)
2, Tìm giá trị nhỏ nhất của biểu thức :B=\(xy\left(x-2\right)\left(y+6\right)+12x^2-24x+3y^2+18y+2045\)
Giá trị nhỏ nhất của biểu thức P = \(\frac{x^2}{x+4}\left(\frac{x^2+16}{x}+8\right)+9\)
Cho biểu thức: \(A=\dfrac{x^3-3}{\left(x+1\right).\left(x-3\right)}-\dfrac{2.\left(x-3\right)}{x+1}-\dfrac{x+3}{x-3}\). Tìm giá trị nguyên của x để A có giá trị nguyên
Cho biểu thức \(P=\left(\dfrac{4x}{2+x}+\dfrac{8x^2}{4-x^2}\right):\left(\dfrac{x-1}{x^2-2x}-\dfrac{2}{x}\right)\). Tìm các giá trị của x để P<0
Cho biểu thức: \(B=\dfrac{x}{1-x}+\dfrac{5}{x}\) với 0<x<1. Hãy tìm giá trị nhỏ nhất của B
Với n là số tự nhiên khác 0 . kí hiệu n! là tích của n số tự nhiên liên tiếp từ 1 đến n
Với mọi n >2 hoặc n =2 thì giá trị của A=\(\frac{\left(x+2\right)!}{\left(x-1\right)!}\) bằng giá trị của biểu thức nào dưới đây :