Chương I : Số hữu tỉ. Số thực

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Minh Hằng

Tìm giá trị nhỏ nhất của biểu thức:

a) E = (2x + \(\dfrac{1}{4}\))4 + 6

b) E = (5 - 3x)2 - 2013

c) A = 2013 + \(|2x-3|\)

d) B= -1 + \(|\dfrac{1}{2}x-3|\)

e) M = 2015 - \(\dfrac{1}{3+|x-1|}\)

f) N = \(\sqrt{x-3}\) + 2016

Nguyễn Hạnh
20 tháng 11 2017 lúc 15:24

a, Ta có: \(\left(2x+\dfrac{1}{4}\right)^4\ge0\rightarrow\left(2x+\dfrac{1}{4}\right)^4+6\ge6\)

Dấu ''=" xảy ra khi \(2x+\dfrac{1}{4}=0\rightarrow2x=\dfrac{-1}{4}\rightarrow x=\dfrac{-1}{8}\)

Vậy MinE=6\(\Leftrightarrow x=\dfrac{-1}{8}\)

b, Ta có: \(\left(5-3x\right)^2\ge0\rightarrow\left(5-3x\right)^2-2013\ge-2013\)

Dấu ''='' xảy ra khi \(5-3x=0\rightarrow3x=5\rightarrow x=\dfrac{5}{3}\)

Vậy MinE=-2013\(\Leftrightarrow x=\dfrac{5}{3}\)

Nguyễn Nam
20 tháng 11 2017 lúc 15:29

a) \(E=\left(2x+\dfrac{1}{4}\right)^4+6\)

\(\left(2x+\dfrac{1}{4}\right)^4\ge0\)

Nên \(\left(2x+\dfrac{1}{4}\right)^4+6\ge6\)

Vậy GTNN của \(E=6\) khi \(2x+\dfrac{1}{4}=0\Leftrightarrow x=\dfrac{-1}{8}\)

b) \(E=\left(5-3x\right)^2-2013\)

\(\left(5-3x\right)^2\ge0\)

Nên \(\left(5-3x\right)^2-2013\ge-2013\)

Vậy GTNN của \(E=-2013\) khi \(5-3x=0\Leftrightarrow x=\dfrac{5}{3}\)

c) \(A=2013+\left|2x-3\right|\)

\(\left|2x-3\right|\ge0\)

Nên \(2013+\left|2x-3\right|\ge2013\)

Vậy GTNN của \(A=2013\) khi \(2x-3=0\Leftrightarrow x=\dfrac{3}{2}\)

d) \(B=-1+\left|\dfrac{1}{2}x-3\right|\)

\(\left|\dfrac{1}{2}x-3\right|\ge0\)

Nên \(-1+\left|\dfrac{1}{2}x-3\right|\ge-1\)

Vậy GTNN của \(B=-1\) khi \(\dfrac{1}{2}x-3=0\Leftrightarrow x=6\)