Lời giải:
\(A=x^2-5x+5\)
\(=x^2-2.\frac{5}{2}x+(\frac{5}{2})^2-\frac{5}{4}\)
\(=\left(x-\frac{5}{2}\right)^2-\frac{5}{4}\)
Vì \((x-\frac{5}{2})^2\geq 0, \forall x\in\mathbb{R}\Rightarrow A=(x-\frac{5}{2})^2-\frac{5}{4}\geq 0-\frac{5}{4}=\frac{-5}{4}\)
Vậy \(A_{\min}=-\frac{5}{4}\). Dấu bằng xảy ra khi \(x=\frac{5}{2}\)
--------------
\(B=x^2-3x+1\)
\(=x^2-2.\frac{3}{2}x+(\frac{3}{2})^2-\frac{5}{4}\)
\(=(x-\frac{3}{2})^2-\frac{5}{4}\)
Vì \((x-\frac{3}{2})^2\geq 0, \forall x\in\mathbb{R}\Rightarrow B\geq 0-\frac{5}{4}=-\frac{5}{4}\)
Vậy \(B_{\min}=\frac{-5}{4}\Leftrightarrow x=\frac{3}{2}\)
\(C=3x^2-6x+8\)
\(=3(x^2-2x+1)+5\)
\(=3(x-1)^2+5\)
Vì \((x-1)^2\geq 0, \forall x\in\mathbb{R}\Rightarrow C\geq 3.0+5=5\)
Do đó \(C_{\min}=5\Leftrightarrow x=1\)
----------------
\(D=7x^2+21x+3\)
\(=7[x^2+3x+(\frac{3}{2})^2]-\frac{51}{4}\)
\(=7[x^2+2.\frac{3}{2}.x+(\frac{3}{2})^2]-\frac{51}{4}=7(x+\frac{3}{2})^2-\frac{51}{4}\)
Vì \((x+\frac{3}{2})^2\geq 0, \forall x\in\mathbb{R}\Rightarrow D\geq 7.0-\frac{51}{4}=\frac{-51}{4}\)
Vậy \(D_{\min}=-\frac{51}{4}\Leftrightarrow x=\frac{-3}{2}\)
\(E=x^2+y^2+2x+4y\)
\(=x^2+y^2+2x+4y+1+4-5\)
\(=(x^2+2x+1)+(y^2+4y+4)-5\)
\(=(x+1)^2+(y+2)^2-5\)
Vì \((x+1)^2; (y+2)^2\geq 0, \forall x,y\in\mathbb{R}\), do đó:
\(E\geq 0+0-5=-5\)
Vậy \(E_{\min}=-5\).
Dấu bằng xảy ra khi \((x+1)^2=(y+2)^2=0\Leftrightarrow x=-1; y=-2\)