\(P=\dfrac{2\left(x^2+2\right)+x^2-4x+4}{x^2+2}=2+\dfrac{\left(x-2\right)^2}{x^2+2}\ge2\)
\(P=\dfrac{5\left(x^2+2\right)-2x^2-4x-2}{x^2+2}=5-\dfrac{2\left(x+1\right)^2}{x^2+2}\le5\)
\(P=\dfrac{2\left(x^2+2\right)+x^2-4x+4}{x^2+2}=2+\dfrac{\left(x-2\right)^2}{x^2+2}\ge2\)
\(P=\dfrac{5\left(x^2+2\right)-2x^2-4x-2}{x^2+2}=5-\dfrac{2\left(x+1\right)^2}{x^2+2}\le5\)
Cho A = \(\dfrac{1}{\sqrt{x}-2}\) (x ≥ 0; x≠4)
Với x là số chính phương, hãy tìm giá trị nhỏ nhất, giá trị lớn nhất của A.
Giúp mình với!
\(\text{Cho 3 số dương x, y, z thỏa mãn x+y+z=2 tìm giá trị nhỏ nhất của biểu thức A =}\dfrac{2}{x}+\dfrac{8}{9y}+\dfrac{18}{25z}\)
Cho x,y là các số thực dương thỏa mãn xy+1≤ x. Tìm giá trị lớn nhất của biểu thức Q=\(\dfrac{x+y}{\sqrt{3x^2-xy+y^2}}\)
cho biểu thức P = \(\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{3-9}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
a, rút gọn P
b, tìm x để P < \(\dfrac{1}{2}\)
c, tìm giá trị nhỏ nhất của P
Tìm giá trị nhỏ nhất của biểu thức A=\(\dfrac{2x^2+3}{\sqrt{x^2+4}+2}\)
P= \(\dfrac{3\sqrt{x}+2}{\sqrt{x}+1}-\dfrac{2\sqrt{x}-3}{3-\sqrt{x}}-\dfrac{3\left(3\sqrt{x}-5\right)}{x-2\sqrt{x}-3}\)
1 Rút gọn biểu thức P
2 Tinhd giá trị của P khi x= \(4+2\sqrt{3}\)
3 Tìm giá trị nhỏ nhất của P
Cho \(P=\left(\dfrac{x}{x+2}-\dfrac{x^3-8}{x^3+8}.\dfrac{x^2-2x+4}{x^2-4}\right):\dfrac{4}{x+2}\)
a ) Rút gọn P
b ) Tìm x để P<0
c ) Tìm x để \(P=\dfrac{1}{x}+1\)
d ) Tính P khi \(\left|2x-1\right|=3\)
e ) Tính giá trị nhỏ nhất của P
Cho các số thực dương x,y > 1 . Tìm giá trị nhỏ nhất của biểu thức P = \(\dfrac{x^2}{y-1}+\dfrac{y^2}{x-1}\)
cho x,y là hai số thực dương thỏa mãn x+y≤xy.Tìm giá trị lớn nhất của biểu thức M=\(\dfrac{1}{2x^2+3y^2}+\dfrac{1}{3x^2+2y^2}\)